\(sl(2)\)-subalgebras of \(E^{1}_8\)

\(E^{1}_8\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.

Page generated by the calculator project.

Number of sl(2) subalgebras: 69.
Let h be in the Cartan subalgebra. Let \(\alpha_1, ..., \alpha_n\) be simple roots with respect to h. Then the h-characteristic, as defined by E. Dynkin, is the n-tuple \((\alpha_1(h), ..., \alpha_n(h))\).

The actual realization of h. The coordinates of h are given with respect to the fixed original simple basis. Note that the h-characteristic is computed using a possibly different simple basis, more precisely, with respect to any h-positive simple basis.
A regular semisimple subalgebra might contain an sl(2) such that the sl(2) has no centralizer in the regular semisimple subalgebra, but the regular semisimple subalgebra might fail to be minimal containing. This happens when another minimal containing regular semisimple subalgebra of equal rank nests as a root subalgebra in the containing SA. See Dynkin, Semisimple Lie subalgebras of semisimple Lie algebras, remark before Theorem 10.4.
The \(sl(2)\) submodules of the ambient Lie algebra are parametrized by their highest weight with respect to the Cartan element h of \(sl(2)\). In turn, the highest weight is a positive integer multiple of the fundamental highest weight \(\psi\). \(V_{l\psi}\) is \(l + 1\)-dimensional.


Type + realization linkh-CharacteristicRealization of hsl(2)-module decomposition of the ambient Lie algebra
\(\psi=\) the fundamental \(sl(2)\)-weight.
Centralizer dimensionType of semisimple part of centralizer, if knownThe square of the length of the weight dual to h.Dynkin index Minimal containing regular semisimple SAsContaining regular semisimple SAs in which the sl(2) has no centralizer
\(A^{1240}_1\)(2, 2, 2, 2, 2, 2, 2, 2)(92, 136, 182, 270, 220, 168, 114, 58)\(V_{58\psi}+V_{46\psi}+V_{38\psi}+V_{34\psi}+V_{26\psi}+V_{22\psi}+V_{14\psi}+V_{2\psi}\)
0 \(\displaystyle 0\)24801240E^{1}_8; E^{1}_8;
\(A^{760}_1\)(2, 2, 2, 0, 2, 2, 2, 2)(72, 106, 142, 210, 172, 132, 90, 46)\(V_{46\psi}+V_{38\psi}+V_{34\psi}+V_{28\psi}+V_{26\psi}+V_{22\psi}+V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{2\psi}\)
0 \(\displaystyle 0\)1520760E^{1}_8; E^{1}_8;
\(A^{520}_1\)(2, 2, 2, 0, 2, 0, 2, 2)(60, 88, 118, 174, 142, 108, 74, 38)\(V_{38\psi}+V_{34\psi}+V_{28\psi}+V_{26\psi}+2V_{22\psi}+V_{18\psi}+V_{16\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}
+V_{2\psi}\)
0 \(\displaystyle 0\)1040520E^{1}_8; E^{1}_8;
\(A^{400}_1\)(2, 0, 0, 2, 0, 2, 2, 2)(52, 76, 102, 152, 124, 96, 66, 34)\(V_{34\psi}+V_{28\psi}+2V_{26\psi}+V_{22\psi}+2V_{18\psi}+V_{16\psi}+V_{14\psi}+2V_{10\psi}+V_{8\psi}+2V_{2\psi}\)
0 \(\displaystyle 0\)800400E^{1}_8; E^{1}_7+A^{1}_1; E^{1}_8; E^{1}_7+A^{1}_1;
\(A^{399}_1\)(2, 1, 1, 0, 1, 2, 2, 2)(52, 76, 102, 151, 124, 96, 66, 34)\(V_{34\psi}+2V_{27\psi}+V_{26\psi}+V_{22\psi}+V_{18\psi}+2V_{17\psi}+V_{14\psi}+V_{10\psi}+2V_{9\psi}+V_{2\psi}
+3V_{0}\)
3 \(\displaystyle A^{1}_1\)798399E^{1}_7; E^{1}_7;
\(A^{280}_1\)(2, 0, 0, 2, 0, 2, 0, 2)(44, 64, 86, 128, 104, 80, 54, 28)\(V_{28\psi}+V_{26\psi}+2V_{22\psi}+2V_{18\psi}+V_{16\psi}+3V_{14\psi}+2V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}
+V_{2\psi}\)
0 \(\displaystyle 0\)560280E^{1}_8; D^{1}_8; E^{1}_8; D^{1}_8;
\(A^{232}_1\)(2, 0, 0, 2, 0, 0, 2, 2)(40, 58, 78, 116, 94, 72, 50, 26)\(V_{26\psi}+2V_{22\psi}+V_{20\psi}+V_{18\psi}+2V_{16\psi}+2V_{14\psi}+V_{12\psi}+3V_{10\psi}+2V_{6\psi}
+V_{4\psi}+2V_{2\psi}\)
0 \(\displaystyle 0\)464232E^{1}_8; E^{1}_7+A^{1}_1; E^{1}_8; E^{1}_7+A^{1}_1;
\(A^{231}_1\)(2, 1, 1, 0, 1, 0, 2, 2)(40, 58, 78, 115, 94, 72, 50, 26)\(V_{26\psi}+V_{22\psi}+2V_{21\psi}+V_{18\psi}+V_{16\psi}+2V_{15\psi}+V_{14\psi}+2V_{11\psi}+2V_{10\psi}
+V_{6\psi}+2V_{5\psi}+V_{2\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)462231E^{1}_7; E^{1}_7;
\(A^{184}_1\)(2, 0, 0, 2, 0, 0, 2, 0)(36, 52, 70, 104, 84, 64, 44, 22)\(2V_{22\psi}+V_{20\psi}+V_{18\psi}+V_{16\psi}+3V_{14\psi}+2V_{12\psi}+4V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}
+3V_{2\psi}\)
0 \(\displaystyle 0\)368184E^{1}_8; D^{1}_8; E^{1}_8; D^{1}_8;
\(A^{182}_1\)(2, 1, 1, 0, 1, 1, 0, 1)(36, 52, 70, 103, 84, 64, 43, 22)\(V_{22\psi}+2V_{21\psi}+V_{18\psi}+2V_{15\psi}+V_{14\psi}+3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}
+V_{6\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
3 not computed364182D^{1}_7; D^{1}_7;
\(A^{160}_1\)(0, 0, 0, 2, 0, 0, 2, 2)(32, 48, 64, 96, 78, 60, 42, 22)\(V_{22\psi}+2V_{18\psi}+3V_{16\psi}+3V_{14\psi}+3V_{10\psi}+3V_{8\psi}+2V_{6\psi}+V_{4\psi}+4V_{2\psi}\)
0 \(\displaystyle 0\)320160E^{1}_8; E^{1}_7+A^{1}_1; E^{1}_6+A^{1}_2; E^{1}_8; E^{1}_7+A^{1}_1; E^{1}_6+A^{1}_2;
\(A^{159}_1\)(0, 1, 1, 0, 1, 0, 2, 2)(32, 48, 64, 95, 78, 60, 42, 22)\(V_{22\psi}+V_{18\psi}+2V_{17\psi}+V_{16\psi}+2V_{15\psi}+2V_{14\psi}+2V_{10\psi}+2V_{9\psi}+V_{8\psi}
+2V_{7\psi}+V_{6\psi}+2V_{3\psi}+2V_{2\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)318159E^{1}_7; E^{1}_7;
\(A^{157}_1\)(1, 0, 0, 1, 0, 1, 2, 2)(32, 47, 63, 94, 77, 60, 42, 22)\(V_{22\psi}+2V_{17\psi}+3V_{16\psi}+2V_{15\psi}+V_{14\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+2V_{7\psi}
+2V_{2\psi}+4V_{\psi}+3V_{0}\)
3 not computed314157E^{1}_6+A^{1}_1; E^{1}_6+A^{1}_1;
\(A^{156}_1\)(2, 0, 0, 0, 0, 2, 2, 2)(32, 46, 62, 92, 76, 60, 42, 22)\(V_{22\psi}+7V_{16\psi}+V_{14\psi}+V_{10\psi}+7V_{8\psi}+V_{2\psi}+14V_{0}\)
14 not computed312156E^{1}_6; E^{1}_6;
\(A^{120}_1\)(0, 0, 0, 2, 0, 0, 2, 0)(28, 42, 56, 84, 68, 52, 36, 18)\(2V_{18\psi}+V_{16\psi}+3V_{14\psi}+3V_{12\psi}+3V_{10\psi}+3V_{8\psi}+5V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
0 \(\displaystyle 0\)240120E^{1}_8; D^{1}_8; A^{1}_8; E^{1}_8; D^{1}_8; A^{1}_8;
\(A^{112}_1\)(2, 0, 0, 0, 2, 0, 0, 2)(28, 40, 54, 80, 66, 50, 34, 18)\(V_{18\psi}+2V_{16\psi}+3V_{14\psi}+V_{12\psi}+6V_{10\psi}+3V_{8\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}
+V_{0}\)
1 \(\displaystyle 0\)224112E^{1}_7+A^{1}_1; D^{1}_6+2A^{1}_1; D^{1}_7; E^{1}_7+A^{1}_1; D^{1}_6+2A^{1}_1; D^{1}_7;
\(A^{111}_1\)(2, 0, 0, 1, 0, 1, 0, 2)(28, 40, 54, 80, 65, 50, 34, 18)\(V_{18\psi}+V_{16\psi}+2V_{15\psi}+2V_{14\psi}+2V_{11\psi}+3V_{10\psi}+4V_{9\psi}+V_{8\psi}+2V_{6\psi}
+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)222111E^{1}_7; D^{1}_6+A^{1}_1; E^{1}_7; D^{1}_6+A^{1}_1;
\(A^{110}_1\)(2, 1, 1, 0, 0, 0, 1, 2)(28, 40, 54, 79, 64, 49, 34, 18)\(V_{18\psi}+4V_{15\psi}+V_{14\psi}+6V_{10\psi}+4V_{9\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}\)
10 not computed220110D^{1}_6; D^{1}_6;
\(A^{88}_1\)(0, 0, 0, 2, 0, 0, 0, 2)(24, 36, 48, 72, 58, 44, 30, 16)\(V_{16\psi}+3V_{14\psi}+2V_{12\psi}+6V_{10\psi}+3V_{8\psi}+5V_{6\psi}+4V_{4\psi}+4V_{2\psi}\)
0 \(\displaystyle 0\)17688E^{1}_8; D^{1}_8; E^{1}_6+A^{1}_2; E^{1}_8; D^{1}_8; E^{1}_6+A^{1}_2;
\(A^{85}_1\)(1, 0, 0, 1, 0, 1, 0, 2)(24, 35, 47, 70, 57, 44, 30, 16)\(V_{16\psi}+V_{14\psi}+2V_{13\psi}+2V_{12\psi}+2V_{11\psi}+2V_{10\psi}+2V_{9\psi}+3V_{8\psi}+2V_{7\psi}
+V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
1 \(\displaystyle 0\)17085A^{1}_7+A^{1}_1; E^{1}_6+A^{1}_1; A^{1}_7+A^{1}_1; E^{1}_6+A^{1}_1;
\(A^{84}_1\)(2, 0, 0, 0, 0, 2, 0, 2)(24, 34, 46, 68, 56, 44, 30, 16)\(V_{16\psi}+V_{14\psi}+6V_{12\psi}+2V_{10\psi}+7V_{8\psi}+V_{6\psi}+7V_{4\psi}+V_{2\psi}+8V_{0}\)
8 \(\displaystyle A^{1}_2\)16884A^{1}_7; E^{1}_6; A^{1}_7; E^{1}_6;
\(A^{84}_1\)(1, 0, 0, 1, 0, 1, 1, 0)(24, 35, 47, 70, 57, 44, 30, 15)\(2V_{15\psi}+V_{14\psi}+3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+V_{6\psi}+2V_{5\psi}
+3V_{4\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
3 not computed16884A^{1}_7; A^{1}_7;
\(A^{70}_1\)(1, 0, 0, 1, 0, 1, 0, 1)(22, 32, 43, 64, 52, 40, 27, 14)\(V_{14\psi}+2V_{13\psi}+V_{12\psi}+2V_{11\psi}+2V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+3V_{6\psi}
+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
1 \(\displaystyle 0\)14070D^{1}_5+A^{1}_3; D^{1}_7; D^{1}_5+A^{1}_3; D^{1}_7;
\(A^{64}_1\)(0, 0, 0, 0, 2, 0, 0, 2)(20, 30, 40, 60, 50, 38, 26, 14)\(V_{14\psi}+2V_{12\psi}+7V_{10\psi}+5V_{8\psi}+5V_{6\psi}+5V_{4\psi}+8V_{2\psi}+V_{0}\)
1 \(\displaystyle 0\)12864E^{1}_7+A^{1}_1; D^{1}_6+2A^{1}_1; D^{1}_5+A^{1}_2; E^{1}_7+A^{1}_1; D^{1}_6+2A^{1}_1; D^{1}_5+A^{1}_2;
\(A^{63}_1\)(0, 0, 0, 1, 0, 1, 0, 2)(20, 30, 40, 60, 49, 38, 26, 14)\(V_{14\psi}+V_{12\psi}+2V_{11\psi}+4V_{10\psi}+4V_{9\psi}+2V_{8\psi}+2V_{7\psi}+3V_{6\psi}+2V_{5\psi}+2V_{4\psi}
+4V_{3\psi}+4V_{2\psi}+2V_{\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)12663E^{1}_7; D^{1}_6+A^{1}_1; E^{1}_7; D^{1}_6+A^{1}_1;
\(A^{62}_1\)(0, 1, 1, 0, 0, 0, 1, 2)(20, 30, 40, 59, 48, 37, 26, 14)\(V_{14\psi}+4V_{11\psi}+2V_{10\psi}+4V_{9\psi}+5V_{8\psi}+2V_{6\psi}+4V_{5\psi}+4V_{3\psi}+6V_{2\psi}+6V_{0}\)
6 \(\displaystyle 2A^{1}_1\)12462D^{1}_5+2A^{1}_1; D^{1}_6; D^{1}_5+2A^{1}_1; D^{1}_6;
\(A^{61}_1\)(1, 0, 0, 0, 1, 0, 1, 2)(20, 29, 39, 58, 48, 37, 26, 14)\(V_{14\psi}+2V_{11\psi}+5V_{10\psi}+4V_{9\psi}+3V_{8\psi}+2V_{7\psi}+V_{6\psi}+2V_{5\psi}+4V_{4\psi}+2V_{3\psi}
+2V_{2\psi}+6V_{\psi}+6V_{0}\)
6 not computed12261D^{1}_5+A^{1}_1; D^{1}_5+A^{1}_1;
\(A^{60}_1\)(2, 0, 0, 0, 0, 0, 2, 2)(20, 28, 38, 56, 46, 36, 26, 14)\(V_{14\psi}+9V_{10\psi}+7V_{8\psi}+V_{6\psi}+8V_{4\psi}+V_{2\psi}+21V_{0}\)
21 not computed12060D^{1}_5; D^{1}_5;
\(A^{57}_1\)(1, 0, 0, 1, 0, 1, 0, 0)(20, 29, 39, 58, 47, 36, 24, 12)\(3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+4V_{5\psi}+3V_{4\psi}+2V_{3\psi}
+2V_{2\psi}+2V_{\psi}+3V_{0}\)
3 not computed11457A^{1}_6+A^{1}_1; A^{1}_6+A^{1}_1;
\(A^{56}_1\)(2, 0, 0, 0, 0, 2, 0, 0)(20, 28, 38, 56, 46, 36, 24, 12)\(3V_{12\psi}+5V_{10\psi}+3V_{8\psi}+13V_{6\psi}+3V_{4\psi}+5V_{2\psi}+6V_{0}\)
6 not computed112562D^{1}_4; A^{1}_6; 2D^{1}_4; A^{1}_6;
\(A^{40}_1\)(0, 0, 0, 0, 2, 0, 0, 0)(16, 24, 32, 48, 40, 30, 20, 10)\(4V_{10\psi}+6V_{8\psi}+10V_{6\psi}+10V_{4\psi}+10V_{2\psi}\)
0 \(\displaystyle 0\)8040E^{1}_8; D^{1}_8; E^{1}_7+A^{1}_1; E^{1}_6+A^{1}_2; D^{1}_6+2A^{1}_1; D^{1}_5+A^{1}_3; A^{1}_5+A^{1}_2+A^{1}_1; 2D^{1}_4; 2A^{1}_4; E^{1}_8; D^{1}_8; E^{1}_7+A^{1}_1; E^{1}_6+A^{1}_2; D^{1}_6+2A^{1}_1; D^{1}_5+A^{1}_3; A^{1}_5+A^{1}_2+A^{1}_1; 2D^{1}_4; 2D^{1}_4; 2A^{1}_4;
\(A^{39}_1\)(0, 0, 0, 1, 0, 1, 0, 0)(16, 24, 32, 48, 39, 30, 20, 10)\(3V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+6V_{5\psi}+4V_{4\psi}+6V_{3\psi}+6V_{2\psi}+3V_{0}\)
3 \(\displaystyle A^{1}_1\)7839E^{1}_7; D^{1}_6+A^{1}_1; A^{1}_5+A^{1}_2; E^{1}_7; D^{1}_6+A^{1}_1; A^{1}_5+A^{1}_2;
\(A^{38}_1\)(0, 1, 1, 0, 0, 0, 1, 0)(16, 24, 32, 47, 38, 29, 20, 10)\(2V_{10\psi}+4V_{9\psi}+V_{8\psi}+4V_{7\psi}+7V_{6\psi}+4V_{5\psi}+5V_{4\psi}+8V_{3\psi}+3V_{2\psi}+6V_{0}\)
6 \(\displaystyle 2A^{1}_1\)7638D^{1}_4+A^{1}_3; D^{1}_6; D^{1}_4+A^{1}_3; D^{1}_6;
\(A^{37}_1\)(1, 0, 0, 0, 1, 0, 1, 0)(16, 23, 31, 46, 38, 29, 20, 10)\(2V_{10\psi}+2V_{9\psi}+4V_{8\psi}+4V_{7\psi}+4V_{6\psi}+6V_{5\psi}+7V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}
+3V_{0}\)
3 not computed7437E^{1}_6+A^{1}_1; A^{1}_5+2A^{1}_1; E^{1}_6+A^{1}_1; A^{1}_5+2A^{1}_1;
\(A^{36}_1\)(2, 0, 0, 0, 0, 0, 2, 0)(16, 22, 30, 44, 36, 28, 20, 10)\(2V_{10\psi}+8V_{8\psi}+8V_{6\psi}+15V_{4\psi}+3V_{2\psi}+14V_{0}\)
14 not computed7236E^{1}_6; A^{1}_5+A^{1}_1; E^{1}_6; A^{1}_5+A^{1}_1;
\(A^{36}_1\)(1, 0, 0, 1, 0, 0, 0, 1)(16, 23, 31, 46, 37, 28, 19, 10)\(V_{10\psi}+4V_{9\psi}+3V_{8\psi}+2V_{7\psi}+5V_{6\psi}+8V_{5\psi}+7V_{4\psi}+4V_{3\psi}+2V_{2\psi}+4V_{\psi}
+6V_{0}\)
6 not computed7236A^{1}_5+A^{1}_1; A^{1}_5+A^{1}_1;
\(A^{35}_1\)(2, 0, 0, 0, 0, 1, 0, 1)(16, 22, 30, 44, 36, 28, 19, 10)\(V_{10\psi}+2V_{9\psi}+7V_{8\psi}+V_{6\psi}+14V_{5\psi}+7V_{4\psi}+2V_{3\psi}+V_{2\psi}+17V_{0}\)
17 not computed7035A^{1}_5; A^{1}_5;
\(A^{34}_1\)(0, 0, 1, 0, 0, 1, 0, 1)(15, 22, 30, 44, 36, 28, 19, 10)\(V_{10\psi}+2V_{9\psi}+3V_{8\psi}+6V_{7\psi}+4V_{6\psi}+6V_{5\psi}+6V_{4\psi}+4V_{3\psi}+7V_{2\psi}+4V_{\psi}
+3V_{0}\)
3 not computed6834D^{1}_5+A^{1}_2; D^{1}_5+A^{1}_2;
\(A^{32}_1\)(0, 2, 0, 0, 0, 0, 0, 2)(14, 22, 28, 42, 34, 26, 18, 10)\(V_{10\psi}+6V_{8\psi}+14V_{6\psi}+7V_{4\psi}+14V_{2\psi}+8V_{0}\)
8 not computed6432D^{1}_4+4A^{1}_1; D^{1}_5+2A^{1}_1; D^{1}_4+A^{1}_2; D^{1}_4+4A^{1}_1; D^{1}_5+2A^{1}_1; D^{1}_4+A^{1}_2;
\(A^{31}_1\)(0, 0, 0, 1, 0, 0, 0, 2)(14, 21, 28, 42, 34, 26, 18, 10)\(V_{10\psi}+3V_{8\psi}+6V_{7\psi}+8V_{6\psi}+6V_{5\psi}+3V_{4\psi}+2V_{3\psi}+7V_{2\psi}+10V_{\psi}+6V_{0}\)
6 not computed6231D^{1}_4+3A^{1}_1; D^{1}_5+A^{1}_1; D^{1}_4+3A^{1}_1; D^{1}_5+A^{1}_1;
\(A^{30}_1\)(1, 0, 0, 0, 0, 1, 0, 2)(14, 20, 27, 40, 33, 26, 18, 10)\(V_{10\psi}+V_{8\psi}+8V_{7\psi}+8V_{6\psi}+8V_{5\psi}+V_{4\psi}+8V_{2\psi}+8V_{\psi}+15V_{0}\)
15 \(\displaystyle A^{1}_3\)6030D^{1}_4+2A^{1}_1; D^{1}_5; D^{1}_4+2A^{1}_1; D^{1}_5;
\(A^{30}_1\)(0, 0, 0, 1, 0, 0, 1, 0)(14, 21, 28, 42, 34, 26, 18, 9)\(2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+6V_{6\psi}+6V_{5\psi}+6V_{4\psi}+8V_{3\psi}+6V_{2\psi}+4V_{\psi}+3V_{0}\)
3 not computed6030A^{1}_4+A^{1}_3; A^{1}_4+A^{1}_3;
\(A^{29}_1\)(0, 1, 0, 0, 0, 0, 1, 2)(13, 20, 26, 39, 32, 25, 18, 10)\(V_{10\psi}+6V_{7\psi}+14V_{6\psi}+6V_{5\psi}+2V_{2\psi}+14V_{\psi}+21V_{0}\)
21 not computed5829D^{1}_4+A^{1}_1; D^{1}_4+A^{1}_1;
\(A^{28}_1\)(0, 0, 0, 0, 0, 0, 2, 2)(12, 18, 24, 36, 30, 24, 18, 10)\(V_{10\psi}+26V_{6\psi}+V_{2\psi}+52V_{0}\)
52 not computed5628D^{1}_4; D^{1}_4;
\(A^{25}_1\)(0, 0, 1, 0, 0, 1, 0, 0)(13, 19, 26, 38, 31, 24, 16, 8)\(3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+6V_{5\psi}+10V_{4\psi}+8V_{3\psi}+7V_{2\psi}+6V_{\psi}+3V_{0}\)
3 not computed5025A^{1}_4+A^{1}_2+A^{1}_1; A^{1}_4+A^{1}_2+A^{1}_1;
\(A^{24}_1\)(0, 0, 0, 0, 0, 2, 0, 0)(12, 18, 24, 36, 30, 24, 16, 8)\(3V_{8\psi}+13V_{6\psi}+14V_{4\psi}+18V_{2\psi}+6V_{0}\)
6 not computed48242D^{1}_4; A^{1}_4+A^{1}_2; 2D^{1}_4; A^{1}_4+A^{1}_2;
\(A^{22}_1\)(0, 0, 0, 1, 0, 0, 0, 1)(12, 18, 24, 36, 29, 22, 15, 8)\(V_{8\psi}+4V_{7\psi}+5V_{6\psi}+8V_{5\psi}+9V_{4\psi}+8V_{3\psi}+9V_{2\psi}+8V_{\psi}+4V_{0}\)
4 not computed44222A^{1}_3+2A^{1}_1; D^{1}_4+A^{1}_3; A^{1}_4+2A^{1}_1; 2A^{1}_3+2A^{1}_1; D^{1}_4+A^{1}_3; A^{1}_4+2A^{1}_1;
\(A^{21}_1\)(1, 0, 0, 0, 0, 1, 0, 1)(12, 17, 23, 34, 28, 22, 15, 8)\(V_{8\psi}+2V_{7\psi}+7V_{6\psi}+8V_{5\psi}+9V_{4\psi}+8V_{3\psi}+8V_{2\psi}+8V_{\psi}+9V_{0}\)
9 \(\displaystyle A^{1}_2\)42212A^{1}_3+A^{1}_1; A^{1}_4+A^{1}_1; 2A^{1}_3+A^{1}_1; A^{1}_4+A^{1}_1;
\(A^{20}_1\)(2, 0, 0, 0, 0, 0, 0, 2)(12, 16, 22, 32, 26, 20, 14, 8)\(V_{8\psi}+11V_{6\psi}+21V_{4\psi}+11V_{2\psi}+24V_{0}\)
24 \(\displaystyle A^{1}_4\)40202A^{1}_3; A^{1}_4; 2A^{1}_3; A^{1}_4;
\(A^{20}_1\)(1, 0, 0, 0, 1, 0, 0, 0)(12, 17, 23, 34, 28, 21, 14, 7)\(4V_{7\psi}+6V_{6\psi}+4V_{5\psi}+10V_{4\psi}+16V_{3\psi}+6V_{2\psi}+4V_{\psi}+10V_{0}\)
10 not computed40202A^{1}_3; 2A^{1}_3;
\(A^{16}_1\)(0, 2, 0, 0, 0, 0, 0, 0)(10, 16, 20, 30, 24, 18, 12, 6)\(8V_{6\psi}+20V_{4\psi}+28V_{2\psi}+8V_{0}\)
8 not computed3216D^{1}_4+4A^{1}_1; 4A^{1}_2; A^{1}_3+A^{1}_2+2A^{1}_1; D^{1}_4+A^{1}_2; D^{1}_4+4A^{1}_1; 4A^{1}_2; A^{1}_3+A^{1}_2+2A^{1}_1; D^{1}_4+A^{1}_2;
\(A^{15}_1\)(0, 0, 0, 1, 0, 0, 0, 0)(10, 15, 20, 30, 24, 18, 12, 6)\(5V_{6\psi}+6V_{5\psi}+10V_{4\psi}+14V_{3\psi}+15V_{2\psi}+10V_{\psi}+6V_{0}\)
6 not computed3015D^{1}_4+3A^{1}_1; A^{1}_3+A^{1}_2+A^{1}_1; D^{1}_4+3A^{1}_1; A^{1}_3+A^{1}_2+A^{1}_1;
\(A^{14}_1\)(1, 0, 0, 0, 0, 1, 0, 0)(10, 14, 19, 28, 23, 18, 12, 6)\(3V_{6\psi}+8V_{5\psi}+8V_{4\psi}+16V_{3\psi}+16V_{2\psi}+8V_{\psi}+11V_{0}\)
11 not computed2814A^{1}_3+4A^{1}_1; D^{1}_4+2A^{1}_1; A^{1}_3+A^{1}_2; A^{1}_3+4A^{1}_1; D^{1}_4+2A^{1}_1; A^{1}_3+A^{1}_2;
\(A^{13}_1\)(0, 1, 0, 0, 0, 0, 1, 0)(9, 14, 18, 27, 22, 17, 12, 6)\(2V_{6\psi}+6V_{5\psi}+13V_{4\psi}+12V_{3\psi}+16V_{2\psi}+14V_{\psi}+9V_{0}\)
9 \(\displaystyle 3A^{1}_1\)26133A^{1}_2+A^{1}_1; A^{1}_3+3A^{1}_1; D^{1}_4+A^{1}_1; 3A^{1}_2+A^{1}_1; A^{1}_3+3A^{1}_1; D^{1}_4+A^{1}_1;
\(A^{12}_1\)(0, 0, 1, 0, 0, 0, 0, 1)(9, 13, 18, 26, 21, 16, 11, 6)\(V_{6\psi}+6V_{5\psi}+11V_{4\psi}+16V_{3\psi}+15V_{2\psi}+14V_{\psi}+13V_{0}\)
13 not computed2412A^{1}_3+2A^{1}_1; A^{1}_3+2A^{1}_1;
\(A^{12}_1\)(0, 0, 0, 0, 0, 0, 2, 0)(8, 12, 16, 24, 20, 16, 12, 6)\(2V_{6\psi}+25V_{4\psi}+27V_{2\psi}+28V_{0}\)
28 \(\displaystyle D^{1}_4\)24123A^{1}_2; A^{1}_3+2A^{1}_1; D^{1}_4; 3A^{1}_2; A^{1}_3+2A^{1}_1; D^{1}_4;
\(A^{11}_1\)(0, 0, 0, 0, 0, 1, 0, 1)(8, 12, 16, 24, 20, 16, 11, 6)\(V_{6\psi}+2V_{5\psi}+15V_{4\psi}+18V_{3\psi}+10V_{2\psi}+14V_{\psi}+24V_{0}\)
24 not computed2211A^{1}_3+A^{1}_1; A^{1}_3+A^{1}_1;
\(A^{10}_1\)(1, 0, 0, 0, 0, 0, 0, 2)(8, 11, 15, 22, 18, 14, 10, 6)\(V_{6\psi}+11V_{4\psi}+32V_{3\psi}+V_{2\psi}+55V_{0}\)
55 not computed2010A^{1}_3; A^{1}_3;
\(A^{10}_1\)(0, 0, 0, 0, 1, 0, 0, 0)(8, 12, 16, 24, 20, 15, 10, 5)\(4V_{5\psi}+10V_{4\psi}+16V_{3\psi}+20V_{2\psi}+20V_{\psi}+10V_{0}\)
10 not computed20102A^{1}_2+2A^{1}_1; 2A^{1}_2+2A^{1}_1;
\(A^{9}_1\)(1, 0, 0, 0, 0, 0, 1, 0)(8, 11, 15, 22, 18, 14, 10, 5)\(2V_{5\psi}+10V_{4\psi}+16V_{3\psi}+23V_{2\psi}+18V_{\psi}+17V_{0}\)
17 not computed1892A^{1}_2+A^{1}_1; 2A^{1}_2+A^{1}_1;
\(A^{8}_1\)(2, 0, 0, 0, 0, 0, 0, 0)(8, 10, 14, 20, 16, 12, 8, 4)\(14V_{4\psi}+50V_{2\psi}+28V_{0}\)
28 not computed1688A^{1}_1; A^{1}_2+4A^{1}_1; 2A^{1}_2; 8A^{1}_1; A^{1}_2+4A^{1}_1; 2A^{1}_2;
\(A^{7}_1\)(0, 0, 1, 0, 0, 0, 0, 0)(7, 10, 14, 20, 16, 12, 8, 4)\(7V_{4\psi}+14V_{3\psi}+28V_{2\psi}+28V_{\psi}+17V_{0}\)
17 not computed1477A^{1}_1; A^{1}_2+3A^{1}_1; 7A^{1}_1; A^{1}_2+3A^{1}_1;
\(A^{6}_1\)(0, 0, 0, 0, 0, 1, 0, 0)(6, 9, 12, 18, 15, 12, 8, 4)\(3V_{4\psi}+16V_{3\psi}+27V_{2\psi}+32V_{\psi}+24V_{0}\)
24 not computed1266A^{1}_1; A^{1}_2+2A^{1}_1; 6A^{1}_1; A^{1}_2+2A^{1}_1;
\(A^{5}_1\)(1, 0, 0, 0, 0, 0, 0, 1)(6, 8, 11, 16, 13, 10, 7, 4)\(V_{4\psi}+12V_{3\psi}+32V_{2\psi}+32V_{\psi}+35V_{0}\)
35 \(\displaystyle A^{1}_5\)1055A^{1}_1; A^{1}_2+A^{1}_1; 5A^{1}_1; A^{1}_2+A^{1}_1;
\(A^{4}_1\)(0, 0, 0, 0, 0, 0, 0, 2)(4, 6, 8, 12, 10, 8, 6, 4)\(V_{4\psi}+55V_{2\psi}+78V_{0}\)
78 \(\displaystyle E^{1}_6\)844A^{1}_1; A^{1}_2; 4A^{1}_1; A^{1}_2;
\(A^{4}_1\)(0, 1, 0, 0, 0, 0, 0, 0)(5, 8, 10, 15, 12, 9, 6, 3)\(8V_{3\psi}+28V_{2\psi}+48V_{\psi}+36V_{0}\)
36 not computed844A^{1}_1; 4A^{1}_1;
\(A^{3}_1\)(0, 0, 0, 0, 0, 0, 1, 0)(4, 6, 8, 12, 10, 8, 6, 3)\(2V_{3\psi}+27V_{2\psi}+52V_{\psi}+55V_{0}\)
55 not computed633A^{1}_1; 3A^{1}_1;
\(A^{2}_1\)(1, 0, 0, 0, 0, 0, 0, 0)(4, 5, 7, 10, 8, 6, 4, 2)\(14V_{2\psi}+64V_{\psi}+78V_{0}\)
78 not computed422A^{1}_1; 2A^{1}_1;
\(A^{1}_1\)(0, 0, 0, 0, 0, 0, 0, 1)(2, 3, 4, 6, 5, 4, 3, 2)\(V_{2\psi}+56V_{\psi}+133V_{0}\)
133 \(\displaystyle E^{1}_7\)21A^{1}_1; A^{1}_1;


Length longest root ambient algebra squared/4= 1/2

Given a root subsystem P, and a root subsubsystem P_0, in (10.2) of Semisimple subalgebras of semisimple Lie algebras, E. Dynkin defines a numerical constant e(P, P_0) (which we call Dynkin epsilon).
In Theorem 10.3, Dynkin proves that if an sl(2) is an S-subalgebra in the root subalgebra generated by P, such that it has characteristic 2 for all simple roots of P lying in P_0, then e(P, P_0)= 0. It turns out by direct computation that, in the current case of E^{1}_8, e(P,P_0)= 0 implies that an S-sl(2) subalgebra of the root subalgebra generated by P with characteristic with 2's in the simple roots of P_0 always exists. Note that Theorem 10.3 is stated in one direction only.

h-characteristic: (2, 2, 2, 2, 2, 2, 2, 2)
Length of the weight dual to h: 2480
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(V_{58\psi}+V_{46\psi}+V_{38\psi}+V_{34\psi}+V_{26\psi}+V_{22\psi}+V_{14\psi}+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 58h_{8}+114h_{7}+168h_{6}+220h_{5}+270h_{4}+182h_{3}+136h_{2}+92h_{1}\)
\( e = 29/25g_{8}+114/37g_{7}+84/13g_{6}+220/17g_{5}+27g_{4}+182/5g_{3}+68g_{2}+92g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{1} x_{9} -92~\\x_{2} x_{10} -136~\\x_{3} x_{11} -182~\\x_{4} x_{12} -270~\\x_{5} x_{13} -220~\\x_{6} x_{14} -168~\\x_{7} x_{15} -114~\\x_{8} x_{16} -58~\\\end{array}\)


h-characteristic: (2, 2, 2, 0, 2, 2, 2, 2)
Length of the weight dual to h: 1520
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(V_{46\psi}+V_{38\psi}+V_{34\psi}+V_{28\psi}+V_{26\psi}+V_{22\psi}+V_{18\psi}+V_{14\psi}+V_{10\psi}+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 46h_{8}+90h_{7}+132h_{6}+172h_{5}+210h_{4}+142h_{3}+106h_{2}+72h_{1}\)
\( e = 50579/4399g_{12}+37967/1590g_{11}-12137/996g_{10}+46/37g_{8}+45/13g_{7}+132/17g_{6}+3059/4399g_{5}+553/1590g_{3}+2597/996g_{2}+72g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{20} -x_{3} x_{19} -x_{2} x_{18} ~\\x_{10} x_{14} -x_{9} x_{13} -x_{8} x_{12} ~\\x_{1} x_{11} -72~\\x_{8} x_{18} +x_{2} x_{12} -106~\\x_{9} x_{19} +x_{3} x_{13} -142~\\x_{4} x_{14} +x_{3} x_{13} +x_{2} x_{12} -210~\\x_{10} x_{20} +x_{4} x_{14} -172~\\x_{5} x_{15} -132~\\x_{6} x_{16} -90~\\x_{7} x_{17} -46~\\\end{array}\)


h-characteristic: (2, 2, 2, 0, 2, 0, 2, 2)
Length of the weight dual to h: 1040
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(V_{38\psi}+V_{34\psi}+V_{28\psi}+V_{26\psi}+2V_{22\psi}+V_{18\psi}+V_{16\psi}+V_{14\psi}+V_{10\psi}+V_{6\psi}
+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 38h_{8}+74h_{7}+108h_{6}+142h_{5}+174h_{4}+118h_{3}+88h_{2}+60h_{1}\)
\( e = 1631055581639/1188940612995g_{20}+1260008858/578559909g_{14}+1047332629736/1188940612995g_{13}+223162354066/237788122599g_{12}+87438994/2777715g_{11}-33439087/902921g_{10}+19/13g_{8}+211814680/578559909g_{7}-11564221100/237788122599g_{5}-2188492/2777715g_{3}+3955006/902921g_{2}+60g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{10} x_{24} +x_{4} x_{21} -x_{3} x_{20} -x_{2} x_{19} ~\\-x_{9} x_{24} +x_{5} x_{23} -x_{4} x_{22} ~\\x_{12} x_{22} +x_{9} x_{16} -x_{8} x_{15} -x_{7} x_{14} ~\\-x_{12} x_{21} +x_{11} x_{17} -x_{10} x_{16} ~\\x_{1} x_{13} -60~\\x_{7} x_{19} +x_{2} x_{14} -88~\\x_{8} x_{20} +x_{3} x_{15} -118~\\x_{10} x_{22} +x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} -174~\\x_{12} x_{24} +x_{10} x_{22} +x_{9} x_{21} +x_{4} x_{16} -142~\\x_{9} x_{21} +x_{5} x_{17} +x_{4} x_{16} -108~\\x_{11} x_{23} +x_{5} x_{17} -74~\\x_{6} x_{18} -38~\\\end{array}\)


h-characteristic: (2, 0, 0, 2, 0, 2, 2, 2)
Length of the weight dual to h: 800
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: E^{1}_7+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{34\psi}+V_{28\psi}+2V_{26\psi}+V_{22\psi}+2V_{18\psi}+V_{16\psi}+V_{14\psi}+2V_{10\psi}+V_{8\psi}+2V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 34h_{8}+66h_{7}+96h_{6}+124h_{5}+152h_{4}+102h_{3}+76h_{2}+52h_{1}\)
\( e = -6850219020424825/1633719824936606g_{25}+420470631504504855/189511499692646296g_{19}+1688999805007181/1633719824936606g_{18}+1768546167279921/6534879299746424g_{17}+1320960/819797g_{13}-17740190481332631/189511499692646296g_{12}+3183933501905659/47377874923161574g_{11}+3403348864465371/32674396498732120g_{10}+4030780/1609721g_{9}+2g_{8}+33/5g_{7}+879216/819797g_{6}-1347852499030775/47377874923161574g_{4}+3064412/1609721g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{12} x_{28} +x_{9} x_{27} +x_{7} x_{25} +x_{2} x_{22} -x_{1} x_{20} ~\\x_{13} x_{28} +x_{9} x_{26} +x_{8} x_{25} +x_{2} x_{21} ~\\-x_{11} x_{28} -x_{8} x_{27} -x_{7} x_{26} +x_{3} x_{24} -x_{2} x_{23} ~\\x_{14} x_{26} +x_{13} x_{23} +x_{11} x_{21} +x_{8} x_{16} -x_{6} x_{15} ~\\x_{14} x_{27} +x_{12} x_{23} +x_{11} x_{22} +x_{7} x_{16} ~\\-x_{14} x_{25} -x_{13} x_{22} -x_{12} x_{21} +x_{10} x_{17} -x_{9} x_{16} ~\\x_{6} x_{20} +x_{1} x_{15} -52~\\x_{13} x_{27} +x_{9} x_{23} +x_{8} x_{22} +x_{2} x_{16} -76~\\x_{12} x_{26} +x_{9} x_{23} +x_{7} x_{21} +x_{2} x_{16} +x_{1} x_{15} -102~\\x_{14} x_{28} +x_{13} x_{27} +x_{12} x_{26} +x_{11} x_{25} +x_{9} x_{23} +x_{8} x_{22} +x_{7} x_{21} +x_{2} x_{16} -152~\\x_{11} x_{25} +x_{8} x_{22} +x_{7} x_{21} +x_{3} x_{17} +x_{2} x_{16} -124~\\x_{10} x_{24} +x_{3} x_{17} -96~\\x_{4} x_{18} -66~\\x_{5} x_{19} -34~\\\end{array}\)


h-characteristic: (2, 1, 1, 0, 1, 2, 2, 2)
Length of the weight dual to h: 798
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{34\psi}+2V_{27\psi}+V_{26\psi}+V_{22\psi}+V_{18\psi}+2V_{17\psi}+V_{14\psi}+V_{10\psi}+2V_{9\psi}+V_{2\psi}
+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 34h_{8}+66h_{7}+96h_{6}+124h_{5}+151h_{4}+102h_{3}+76h_{2}+52h_{1}\)
\( e = 75/17g_{19}+49/2g_{18}+27/37g_{17}+34g_{8}+66/5g_{7}+48/5g_{6}+2g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} -52~\\x_{7} x_{14} +x_{2} x_{9} -76~\\x_{7} x_{14} +x_{5} x_{12} -102~\\x_{7} x_{14} +x_{5} x_{12} +x_{2} x_{9} -151~\\x_{5} x_{12} +x_{2} x_{9} -124~\\x_{4} x_{11} -96~\\x_{3} x_{10} -66~\\x_{1} x_{8} -34~\\\end{array}\)


h-characteristic: (2, 0, 0, 2, 0, 2, 0, 2)
Length of the weight dual to h: 560
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: D^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(V_{28\psi}+V_{26\psi}+2V_{22\psi}+2V_{18\psi}+V_{16\psi}+3V_{14\psi}+2V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}
+V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 28h_{8}+54h_{7}+80h_{6}+104h_{5}+128h_{4}+86h_{3}+64h_{2}+44h_{1}\)
\( e = -1066872149296115278282/162070670209921063259g_{25}-24862144996/64416575905g_{21}+976594854041262774742/486212010629763189777g_{19}+83103610030904244400/162070670209921063259g_{18}+64457080863532166896/162070670209921063259g_{17}+233481514/222381735g_{15}+135068663306/193249727715g_{14}+608258787526/1301214833281g_{13}+38135073553108202768/486212010629763189777g_{12}+211870191994543703536/1458636031889289569331g_{11}+36521056339453607162/162070670209921063259g_{10}+209414/34929g_{9}+778374688/4492111047g_{8}-36304704218/3903644499843g_{6}-121682775813939837250/1458636031889289569331g_{4}+78086/34929g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{13} x_{32} +x_{8} x_{30} +x_{6} x_{28} +x_{2} x_{23} -x_{1} x_{21} ~\\x_{14} x_{32} +x_{8} x_{29} +x_{7} x_{28} +x_{2} x_{22} ~\\-x_{12} x_{32} +x_{10} x_{31} -x_{7} x_{30} -x_{6} x_{29} +x_{3} x_{25} -x_{2} x_{24} ~\\-x_{9} x_{31} +x_{4} x_{27} -x_{3} x_{26} ~\\x_{16} x_{29} +x_{14} x_{24} +x_{12} x_{22} +x_{7} x_{18} -x_{5} x_{17} ~\\x_{16} x_{30} +x_{13} x_{24} +x_{12} x_{23} +x_{6} x_{18} ~\\-x_{16} x_{28} +x_{15} x_{26} -x_{14} x_{23} -x_{13} x_{22} +x_{9} x_{19} -x_{8} x_{18} ~\\-x_{15} x_{25} +x_{11} x_{20} -x_{10} x_{19} ~\\x_{5} x_{21} +x_{1} x_{17} -44~\\x_{14} x_{30} +x_{8} x_{24} +x_{7} x_{23} +x_{2} x_{18} -64~\\x_{13} x_{29} +x_{8} x_{24} +x_{6} x_{22} +x_{2} x_{18} +x_{1} x_{17} -86~\\x_{16} x_{32} +x_{14} x_{30} +x_{13} x_{29} +x_{12} x_{28} +x_{8} x_{24} +x_{7} x_{23} +x_{6} x_{22} +x_{2} x_{18} -128~\\x_{12} x_{28} +x_{10} x_{26} +x_{7} x_{23} +x_{6} x_{22} +x_{3} x_{19} +x_{2} x_{18} -104~\\x_{15} x_{31} +x_{10} x_{26} +x_{9} x_{25} +x_{3} x_{19} -80~\\x_{9} x_{25} +x_{4} x_{20} +x_{3} x_{19} -54~\\x_{11} x_{27} +x_{4} x_{20} -28~\\\end{array}\)


h-characteristic: (2, 0, 0, 2, 0, 0, 2, 2)
Length of the weight dual to h: 464
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: E^{1}_7+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{26\psi}+2V_{22\psi}+V_{20\psi}+V_{18\psi}+2V_{16\psi}+2V_{14\psi}+V_{12\psi}+3V_{10\psi}+2V_{6\psi}
+V_{4\psi}+2V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 26h_{8}+50h_{7}+72h_{6}+94h_{5}+116h_{4}+78h_{3}+58h_{2}+40h_{1}\)
\( e = -6276857556469035454471/1401125927032108982529g_{33}+364037451058393289455/254750168551292542278g_{27}+4644461231836519938775/1401125927032108982529g_{26}+8202290907206394942641/3736335805418957286744g_{25}+238329415532446/282740957901639g_{21}-335550630538855893715/254750168551292542278g_{20}+97703444144009409565/301926125690420790848g_{19}-9464695122458289397505/3736335805418957286744g_{18}-14396508873038358710455/22418014832513743720464g_{17}+36178809194605/94246985967213g_{14}+981865544689510281289/905778377071262372544g_{12}-433553924555784747863/16304010787282722705792g_{11}+20648041233127228932967/22418014832513743720464g_{10}+4155690500/640829349g_{9}+13/5g_{8}+69300388523197/565481915803278g_{7}-6261181388660952450697/16304010787282722705792g_{4}+1263381380/640829349g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{16} x_{36} +x_{13} x_{35} +x_{11} x_{33} +x_{8} x_{30} +x_{6} x_{28} +x_{2} x_{25} -x_{1} x_{23} ~\\x_{17} x_{36} +x_{13} x_{34} +x_{12} x_{33} +x_{8} x_{29} +x_{7} x_{28} +x_{2} x_{24} ~\\-x_{10} x_{33} +x_{9} x_{32} -x_{7} x_{30} -x_{6} x_{29} -x_{2} x_{26} ~\\-x_{10} x_{36} -x_{7} x_{35} -x_{6} x_{34} +x_{3} x_{32} -x_{2} x_{31} ~\\-x_{15} x_{36} -x_{12} x_{35} -x_{11} x_{34} -x_{8} x_{31} +x_{3} x_{27} ~\\x_{18} x_{34} +x_{17} x_{31} +x_{15} x_{29} +x_{12} x_{26} +x_{10} x_{24} +x_{7} x_{20} -x_{5} x_{19} ~\\x_{18} x_{35} +x_{16} x_{31} +x_{15} x_{30} +x_{11} x_{26} +x_{10} x_{25} +x_{6} x_{20} ~\\-x_{15} x_{28} +x_{14} x_{27} -x_{12} x_{25} -x_{11} x_{24} -x_{8} x_{20} ~\\-x_{18} x_{33} -x_{17} x_{30} -x_{16} x_{29} -x_{13} x_{26} +x_{9} x_{21} ~\\-x_{18} x_{28} -x_{17} x_{25} -x_{16} x_{24} +x_{14} x_{21} -x_{13} x_{20} ~\\x_{5} x_{23} +x_{1} x_{19} -40~\\x_{17} x_{35} +x_{13} x_{31} +x_{12} x_{30} +x_{8} x_{26} +x_{7} x_{25} +x_{2} x_{20} -58~\\x_{16} x_{34} +x_{13} x_{31} +x_{11} x_{29} +x_{8} x_{26} +x_{6} x_{24} +x_{2} x_{20} +x_{1} x_{19} -78~\\x_{18} x_{36} +x_{17} x_{35} +x_{16} x_{34} +x_{15} x_{33} +x_{13} x_{31} +x_{12} x_{30} +x_{11} x_{29} +x_{10} x_{28} +x_{8} x_{26} +x_{7} x_{25} +x_{6} x_{24} +x_{2} x_{20} -116~\\x_{15} x_{33} +x_{12} x_{30} +x_{11} x_{29} +x_{10} x_{28} +x_{8} x_{26} +x_{7} x_{25} +x_{6} x_{24} +x_{3} x_{21} +x_{2} x_{20} -94~\\x_{10} x_{28} +x_{9} x_{27} +x_{7} x_{25} +x_{6} x_{24} +x_{3} x_{21} +x_{2} x_{20} -72~\\x_{14} x_{32} +x_{9} x_{27} +x_{3} x_{21} -50~\\x_{4} x_{22} -26~\\\end{array}\)


h-characteristic: (2, 1, 1, 0, 1, 0, 2, 2)
Length of the weight dual to h: 462
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{26\psi}+V_{22\psi}+2V_{21\psi}+V_{18\psi}+V_{16\psi}+2V_{15\psi}+V_{14\psi}+2V_{11\psi}+2V_{10\psi}
+V_{6\psi}+2V_{5\psi}+V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 26h_{8}+50h_{7}+72h_{6}+94h_{5}+115h_{4}+78h_{3}+58h_{2}+40h_{1}\)
\( e = 7277/1320g_{27}-1517/456g_{26}+19/660g_{19}+269/228g_{18}+21/26g_{17}+2950/627g_{14}+26g_{8}+332/627g_{7}+40/17g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{4} x_{18} +x_{3} x_{17} -x_{2} x_{16} ~\\-x_{9} x_{13} +x_{8} x_{12} -x_{7} x_{11} ~\\x_{5} x_{14} -40~\\x_{7} x_{16} +x_{6} x_{15} +x_{2} x_{11} -58~\\x_{9} x_{18} +x_{6} x_{15} +x_{4} x_{13} -78~\\x_{9} x_{18} +x_{7} x_{16} +x_{6} x_{15} +x_{4} x_{13} +x_{2} x_{11} -115~\\x_{9} x_{18} +x_{7} x_{16} +x_{4} x_{13} +x_{2} x_{11} -94~\\x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} -72~\\x_{8} x_{17} +x_{3} x_{12} -50~\\x_{1} x_{10} -26~\\\end{array}\)


h-characteristic: (2, 0, 0, 2, 0, 0, 2, 0)
Length of the weight dual to h: 368
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: D^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{22\psi}+V_{20\psi}+V_{18\psi}+V_{16\psi}+3V_{14\psi}+2V_{12\psi}+4V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}
+3V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+44h_{7}+64h_{6}+84h_{5}+104h_{4}+70h_{3}+52h_{2}+36h_{1}\)
\( e = 38258440873429473783357285702/24337310727688890098200767283g_{33}-74695608720808932548718/81405326007456702560105g_{29}-21988085616804249336695986614/24337310727688890098200767283g_{27}-70835665323792194486754970551/48674621455377780196401534566g_{26}-122812706866742031437101028895/48674621455377780196401534566g_{25}+1414826348495461322122/16281065201491340512021g_{22}+5439925485129901824492/16281065201491340512021g_{21}+50945404083369112262988241467/48674621455377780196401534566g_{20}+114736439395415902771359527235/97349242910755560392803069132g_{19}+611165104785586732042548735015/778793943286044483142424553056g_{18}+41533573903317315799380412351/48674621455377780196401534566g_{17}+2130221916052031515924/16281065201491340512021g_{15}+557998036904193086956/16281065201491340512021g_{14}-311265937245827173613684211423/778793943286044483142424553056g_{12}-28047225614204503220642167763/97349242910755560392803069132g_{11}-105857000568117557397339362059/778793943286044483142424553056g_{10}+962712819/140565739g_{9}-324114878063877432178/16281065201491340512021g_{7}+57797204745582596388404838035/778793943286044483142424553056g_{4}+819530757/281131478g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{17} x_{40} +x_{13} x_{38} +x_{11} x_{36} +x_{7} x_{32} +x_{5} x_{30} +x_{2} x_{26} -x_{1} x_{24} ~\\x_{18} x_{40} +x_{13} x_{37} +x_{12} x_{36} +x_{7} x_{31} +x_{6} x_{30} +x_{2} x_{25} ~\\x_{15} x_{39} -x_{10} x_{36} +x_{8} x_{34} -x_{6} x_{32} -x_{5} x_{31} -x_{2} x_{27} ~\\-x_{10} x_{40} +x_{9} x_{39} -x_{6} x_{38} -x_{5} x_{37} +x_{3} x_{34} -x_{2} x_{33} ~\\-x_{16} x_{40} -x_{12} x_{38} -x_{11} x_{37} +x_{9} x_{35} -x_{7} x_{33} +x_{3} x_{28} ~\\-x_{14} x_{39} -x_{8} x_{35} -x_{3} x_{29} ~\\x_{20} x_{37} +x_{18} x_{33} +x_{16} x_{31} +x_{12} x_{27} +x_{10} x_{25} +x_{6} x_{22} -x_{4} x_{21} ~\\x_{20} x_{38} +x_{17} x_{33} +x_{16} x_{32} +x_{11} x_{27} +x_{10} x_{26} +x_{5} x_{22} ~\\x_{19} x_{35} -x_{16} x_{30} +x_{14} x_{28} -x_{12} x_{26} -x_{11} x_{25} -x_{7} x_{22} ~\\-x_{20} x_{36} -x_{18} x_{32} -x_{17} x_{31} +x_{15} x_{29} -x_{13} x_{27} +x_{8} x_{23} ~\\-x_{19} x_{34} -x_{15} x_{28} -x_{9} x_{23} ~\\-x_{20} x_{30} +x_{19} x_{29} -x_{18} x_{26} -x_{17} x_{25} +x_{14} x_{23} -x_{13} x_{22} ~\\x_{4} x_{24} +x_{1} x_{21} -36~\\x_{18} x_{38} +x_{13} x_{33} +x_{12} x_{32} +x_{7} x_{27} +x_{6} x_{26} +x_{2} x_{22} -52~\\x_{17} x_{37} +x_{13} x_{33} +x_{11} x_{31} +x_{7} x_{27} +x_{5} x_{25} +x_{2} x_{22} +x_{1} x_{21} -70~\\x_{20} x_{40} +x_{18} x_{38} +x_{17} x_{37} +x_{16} x_{36} +x_{13} x_{33} +x_{12} x_{32} +x_{11} x_{31} +x_{10} x_{30} +x_{7} x_{27} +x_{6} x_{26} +x_{5} x_{25} +x_{2} x_{22} -104~\\x_{16} x_{36} +x_{12} x_{32} +x_{11} x_{31} +x_{10} x_{30} +x_{9} x_{29} +x_{7} x_{27} +x_{6} x_{26} +x_{5} x_{25} +x_{3} x_{23} +x_{2} x_{22} -84~\\x_{15} x_{35} +x_{10} x_{30} +x_{9} x_{29} +x_{8} x_{28} +x_{6} x_{26} +x_{5} x_{25} +x_{3} x_{23} +x_{2} x_{22} -64~\\x_{19} x_{39} +x_{15} x_{35} +x_{14} x_{34} +x_{9} x_{29} +x_{8} x_{28} +x_{3} x_{23} -44~\\x_{14} x_{34} +x_{8} x_{28} +x_{3} x_{23} -22~\\\end{array}\)


h-characteristic: (2, 1, 1, 0, 1, 1, 0, 1)
Length of the weight dual to h: 364
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{22\psi}+2V_{21\psi}+V_{18\psi}+2V_{15\psi}+V_{14\psi}+3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}
+V_{6\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+43h_{7}+64h_{6}+84h_{5}+103h_{4}+70h_{3}+52h_{2}+36h_{1}\)
\( e = 21/26g_{28}+11g_{22}+6g_{19}+12g_{18}+40/17g_{17}+21/37g_{13}+18/5g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{11} -36~\\x_{5} x_{12} +x_{1} x_{8} -52~\\x_{5} x_{12} +x_{3} x_{10} -70~\\x_{6} x_{13} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -103~\\x_{7} x_{14} +x_{6} x_{13} +x_{3} x_{10} +x_{1} x_{8} -84~\\x_{7} x_{14} +x_{6} x_{13} +x_{2} x_{9} -64~\\x_{6} x_{13} +x_{2} x_{9} -43~\\x_{2} x_{9} -22~\\\end{array}\)


h-characteristic: (0, 0, 0, 2, 0, 0, 2, 2)
Length of the weight dual to h: 320
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: E^{1}_7+A^{1}_1 Containing regular semisimple subalgebra number 3: E^{1}_6+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{22\psi}+2V_{18\psi}+3V_{16\psi}+3V_{14\psi}+3V_{10\psi}+3V_{8\psi}+2V_{6\psi}+V_{4\psi}+4V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+42h_{7}+60h_{6}+78h_{5}+96h_{4}+64h_{3}+48h_{2}+32h_{1}\)
\( e = -2059624635409115819458603346233309180/939035662874879412181757010400902873g_{38}-16171363114616522825248553669204803328/939035662874879412181757010400902873g_{33}+1462305411481823118626613152819665747/939035662874879412181757010400902873g_{32}-617522638679793407860474842132074723/939035662874879412181757010400902873g_{30}+8009109413295598414842008213319528581/939035662874879412181757010400902873g_{27}+8376882629345726783936388169496639471/939035662874879412181757010400902873g_{26}-4023387204563639705636001028826127925/939035662874879412181757010400902873g_{25}+47170661937297842378468996349300976/313011887624959804060585670133634291g_{24}-341044563150751201631079135273804053/1878071325749758824363514020801805746g_{23}+5648059660654544/1645697630422947g_{21}-4858308846339889529466090706940044985/939035662874879412181757010400902873g_{20}+400681795391084351935498235571480424/313011887624959804060585670133634291g_{19}+2372137221514877775862815095728611457/939035662874879412181757010400902873g_{18}-1355958907098391179400208832916000363/1878071325749758824363514020801805746g_{17}+16461601351343796772966630172820495/313011887624959804060585670133634291g_{16}+651244891869698/1645697630422947g_{14}-187659419233584960872362833872082894/313011887624959804060585670133634291g_{12}+71184499583795620726927231485874933/313011887624959804060585670133634291g_{11}+1054731234710677779500191495669059133/1878071325749758824363514020801805746g_{10}+22/5g_{8}+77533609556956/548565876807649g_{7}-51418612336216728711568220093800652/313011887624959804060585670133634291g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{20} x_{44} +x_{18} x_{43} +x_{15} x_{41} +x_{12} x_{39} +x_{11} x_{38} +x_{8} x_{36} +x_{6} x_{32} +x_{5} x_{31} +x_{1} x_{26} ~\\x_{17} x_{43} +x_{12} x_{40} +x_{10} x_{38} +x_{6} x_{33} +x_{4} x_{31} +x_{1} x_{27} ~\\-x_{14} x_{41} -x_{9} x_{38} -x_{8} x_{37} +x_{7} x_{35} -x_{5} x_{33} -x_{4} x_{32} -x_{1} x_{28} ~\\x_{17} x_{44} +x_{12} x_{42} +x_{10} x_{41} +x_{6} x_{37} +x_{4} x_{36} +x_{1} x_{30} ~\\-x_{14} x_{44} -x_{9} x_{43} -x_{8} x_{42} -x_{5} x_{40} -x_{4} x_{39} +x_{2} x_{35} -x_{1} x_{34} ~\\-x_{19} x_{44} -x_{16} x_{43} -x_{15} x_{42} -x_{11} x_{40} -x_{10} x_{39} -x_{6} x_{34} +x_{2} x_{29} ~\\x_{22} x_{42} +x_{21} x_{40} +x_{19} x_{37} +x_{17} x_{34} +x_{16} x_{33} +x_{14} x_{30} +x_{10} x_{28} +x_{9} x_{27} +x_{4} x_{23} ~\\x_{21} x_{39} +x_{18} x_{34} +x_{16} x_{32} +x_{11} x_{28} +x_{9} x_{26} +x_{5} x_{23} ~\\x_{21} x_{44} +x_{18} x_{42} +x_{16} x_{41} +x_{11} x_{37} +x_{9} x_{36} +x_{5} x_{30} ~\\-x_{19} x_{36} -x_{16} x_{31} -x_{15} x_{30} +x_{13} x_{29} -x_{11} x_{27} -x_{10} x_{26} -x_{6} x_{23} ~\\-x_{22} x_{41} -x_{21} x_{38} -x_{20} x_{37} -x_{18} x_{33} -x_{17} x_{32} -x_{12} x_{28} +x_{7} x_{24} ~\\x_{22} x_{39} +x_{20} x_{34} +x_{19} x_{32} +x_{15} x_{28} +x_{14} x_{26} +x_{8} x_{23} ~\\x_{22} x_{43} +x_{20} x_{40} +x_{19} x_{38} +x_{15} x_{33} +x_{14} x_{31} +x_{8} x_{27} ~\\-x_{22} x_{36} -x_{21} x_{31} -x_{20} x_{30} -x_{18} x_{27} -x_{17} x_{26} +x_{13} x_{24} -x_{12} x_{23} ~\\x_{22} x_{44} +x_{20} x_{42} +x_{19} x_{41} +x_{15} x_{37} +x_{14} x_{36} +x_{8} x_{30} -32~\\x_{20} x_{42} +x_{18} x_{40} +x_{15} x_{37} +x_{12} x_{34} +x_{11} x_{33} +x_{8} x_{30} +x_{6} x_{28} +x_{5} x_{27} +x_{1} x_{23} -48~\\x_{22} x_{44} +x_{20} x_{42} +x_{19} x_{41} +x_{17} x_{39} +x_{15} x_{37} +x_{14} x_{36} +x_{12} x_{34} +x_{10} x_{32} +x_{8} x_{30} +x_{6} x_{28} +x_{4} x_{26} +x_{1} x_{23} -64~\\x_{22} x_{44} +x_{21} x_{43} +x_{20} x_{42} +x_{19} x_{41} +x_{18} x_{40} +x_{17} x_{39} +x_{16} x_{38} +x_{15} x_{37} +x_{14} x_{36} +x_{12} x_{34} +x_{11} x_{33} +x_{10} x_{32} +x_{9} x_{31} +x_{8} x_{30} +x_{6} x_{28} +x_{5} x_{27} +x_{4} x_{26} +x_{1} x_{23} -96~\\x_{19} x_{41} +x_{16} x_{38} +x_{15} x_{37} +x_{14} x_{36} +x_{11} x_{33} +x_{10} x_{32} +x_{9} x_{31} +x_{8} x_{30} +x_{6} x_{28} +x_{5} x_{27} +x_{4} x_{26} +x_{2} x_{24} +x_{1} x_{23} -78~\\x_{14} x_{36} +x_{9} x_{31} +x_{8} x_{30} +x_{7} x_{29} +x_{5} x_{27} +x_{4} x_{26} +x_{2} x_{24} +x_{1} x_{23} -60~\\x_{13} x_{35} +x_{7} x_{29} +x_{2} x_{24} -42~\\x_{3} x_{25} -22~\\\end{array}\)


h-characteristic: (0, 1, 1, 0, 1, 0, 2, 2)
Length of the weight dual to h: 318
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{22\psi}+V_{18\psi}+2V_{17\psi}+V_{16\psi}+2V_{15\psi}+2V_{14\psi}+2V_{10\psi}+2V_{9\psi}+V_{8\psi}
+2V_{7\psi}+V_{6\psi}+2V_{3\psi}+2V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+42h_{7}+60h_{6}+78h_{5}+95h_{4}+64h_{3}+48h_{2}+32h_{1}\)
\( e = 6960004229/233535680g_{32}-698740277/116767840g_{27}+3518183/620976g_{26}+217910099/46707136g_{24}-3062091/104257g_{23}-22044707/23353568g_{19}+469765/620976g_{18}+656438/104257g_{17}+975401/34935g_{14}+22g_{8}-18431/6987g_{7}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{9} x_{22} -x_{4} x_{19} +x_{3} x_{18} -x_{2} x_{17} ~\\x_{8} x_{22} +x_{5} x_{21} +x_{4} x_{20} ~\\-x_{11} x_{20} -x_{8} x_{15} +x_{7} x_{14} -x_{6} x_{13} ~\\x_{11} x_{19} +x_{10} x_{16} +x_{9} x_{15} ~\\x_{8} x_{19} +x_{5} x_{16} +x_{4} x_{15} -32~\\x_{10} x_{21} +x_{6} x_{17} +x_{5} x_{16} +x_{2} x_{13} -48~\\x_{11} x_{22} +x_{10} x_{21} +x_{9} x_{20} +x_{8} x_{19} +x_{5} x_{16} +x_{4} x_{15} -64~\\x_{11} x_{22} +x_{10} x_{21} +x_{9} x_{20} +x_{8} x_{19} +x_{6} x_{17} +x_{5} x_{16} +x_{4} x_{15} +x_{2} x_{13} -95~\\x_{11} x_{22} +x_{9} x_{20} +x_{8} x_{19} +x_{6} x_{17} +x_{4} x_{15} +x_{2} x_{13} -78~\\x_{9} x_{20} +x_{4} x_{15} +x_{3} x_{14} +x_{2} x_{13} -60~\\x_{7} x_{18} +x_{3} x_{14} -42~\\x_{1} x_{12} -22~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 1, 2, 2)
Length of the weight dual to h: 314
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_6+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{22\psi}+2V_{17\psi}+3V_{16\psi}+2V_{15\psi}+V_{14\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+2V_{7\psi}
+2V_{2\psi}+4V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+42h_{7}+60h_{6}+77h_{5}+94h_{4}+63h_{3}+47h_{2}+32h_{1}\)
\( e = 1/37g_{31}+16g_{30}+6g_{27}+30/17g_{26}+8/13g_{16}+11g_{8}+21/5g_{7}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} +x_{1} x_{8} -32~\\x_{7} x_{14} +x_{5} x_{12} +x_{1} x_{8} -47~\\x_{7} x_{14} +x_{6} x_{13} +x_{3} x_{10} +x_{1} x_{8} -63~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -94~\\x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -77~\\x_{5} x_{12} +x_{3} x_{10} -60~\\x_{4} x_{11} -42~\\x_{2} x_{9} -22~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 2, 2, 2)
Length of the weight dual to h: 312
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: E^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(V_{22\psi}+7V_{16\psi}+V_{14\psi}+V_{10\psi}+7V_{8\psi}+V_{2\psi}+14V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 22h_{8}+42h_{7}+60h_{6}+76h_{5}+92h_{4}+62h_{3}+46h_{2}+32h_{1}\)
\( e = 16g_{44}+30/17g_{27}+6g_{26}+11g_{8}+21/5g_{7}+8/13g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{12} +x_{1} x_{7} -32~\\x_{3} x_{9} +x_{1} x_{7} -46~\\x_{5} x_{11} +2x_{1} x_{7} -62~\\x_{5} x_{11} +x_{3} x_{9} +2x_{1} x_{7} -92~\\x_{5} x_{11} +x_{3} x_{9} +x_{1} x_{7} -76~\\x_{5} x_{11} +x_{3} x_{9} -60~\\x_{4} x_{10} -42~\\x_{2} x_{8} -22~\\\end{array}\)


h-characteristic: (0, 0, 0, 2, 0, 0, 2, 0)
Length of the weight dual to h: 240
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: D^{1}_8 Containing regular semisimple subalgebra number 3: A^{1}_8
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{18\psi}+V_{16\psi}+3V_{14\psi}+3V_{12\psi}+3V_{10\psi}+3V_{8\psi}+5V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 18h_{8}+36h_{7}+52h_{6}+68h_{5}+84h_{4}+56h_{3}+42h_{2}+28h_{1}\)
\( e = 899836863609396109111320469238233590294515016/1078299247385151149702986835848990938741005371g_{38}+4165750292077950296757265815793190433418486628/1078299247385151149702986835848990938741005371g_{33}-95912772400684112671223801813924062377900116/1078299247385151149702986835848990938741005371g_{32}+179261070322480076685715175593375571923887548/1078299247385151149702986835848990938741005371g_{30}-11465461637680002431896/9924749845360598284031g_{29}-872801539459639966142024726118621689249230494/1078299247385151149702986835848990938741005371g_{27}-2896163858671965946703789583477317264469860448/1078299247385151149702986835848990938741005371g_{26}-502524245527877527252158110457126214819885906/1078299247385151149702986835848990938741005371g_{25}-81892578740025007850703605740175784478307984/1078299247385151149702986835848990938741005371g_{24}-43435060629098603017086845018549316952008902/1078299247385151149702986835848990938741005371g_{23}-751966303445121875070/9924749845360598284031g_{22}+3026235659042057983964/9924749845360598284031g_{21}+572469056177939451140614304351859708258340572/1078299247385151149702986835848990938741005371g_{20}+139964456336130200048823522264460929110808118/1078299247385151149702986835848990938741005371g_{19}-202849083223085681678401811578642675325233844/1078299247385151149702986835848990938741005371g_{18}-132764173441953230570924750536315031467989697/1078299247385151149702986835848990938741005371g_{17}+29470888470151528835965280405867010325018062/1078299247385151149702986835848990938741005371g_{16}+1525017547458096156746/9924749845360598284031g_{15}+778241068563917208147/9924749845360598284031g_{14}+153238460473499970169816991954950022022757516/1078299247385151149702986835848990938741005371g_{12}+150529973263220749705422302883060164143180531/1078299247385151149702986835848990938741005371g_{11}+150787098919856009683935076582973325109376502/1078299247385151149702986835848990938741005371g_{10}-181287855867213540550/9924749845360598284031g_{7}-94756299429223122261488013189219666432768678/1078299247385151149702986835848990938741005371g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{22} x_{48} +x_{19} x_{47} +x_{16} x_{45} +x_{12} x_{42} +x_{11} x_{41} +x_{8} x_{39} +x_{5} x_{34} +x_{4} x_{33} +x_{1} x_{27} ~\\x_{18} x_{47} +x_{12} x_{43} +x_{10} x_{41} +x_{5} x_{35} +x_{3} x_{33} +x_{1} x_{28} ~\\-x_{15} x_{45} +x_{14} x_{44} -x_{9} x_{41} -x_{8} x_{40} +x_{6} x_{37} -x_{4} x_{35} -x_{3} x_{34} -x_{1} x_{29} ~\\x_{18} x_{48} +x_{12} x_{46} +x_{10} x_{45} +x_{5} x_{40} +x_{3} x_{39} +x_{1} x_{32} ~\\-x_{15} x_{48} -x_{9} x_{47} -x_{8} x_{46} +x_{7} x_{44} -x_{4} x_{43} -x_{3} x_{42} +x_{2} x_{37} -x_{1} x_{36} ~\\-x_{21} x_{48} -x_{17} x_{47} -x_{16} x_{46} -x_{11} x_{43} -x_{10} x_{42} +x_{7} x_{38} -x_{5} x_{36} +x_{2} x_{30} ~\\-x_{13} x_{44} -x_{6} x_{38} -x_{2} x_{31} ~\\x_{24} x_{46} +x_{23} x_{43} +x_{21} x_{40} +x_{18} x_{36} +x_{17} x_{35} +x_{15} x_{32} +x_{10} x_{29} +x_{9} x_{28} +x_{3} x_{25} ~\\x_{23} x_{42} +x_{19} x_{36} +x_{17} x_{34} +x_{11} x_{29} +x_{9} x_{27} +x_{4} x_{25} ~\\x_{23} x_{48} +x_{19} x_{46} +x_{17} x_{45} +x_{11} x_{40} +x_{9} x_{39} +x_{4} x_{32} ~\\-x_{21} x_{39} +x_{20} x_{38} -x_{17} x_{33} -x_{16} x_{32} +x_{13} x_{30} -x_{11} x_{28} -x_{10} x_{27} -x_{5} x_{25} ~\\-x_{24} x_{45} -x_{23} x_{41} -x_{22} x_{40} -x_{19} x_{35} -x_{18} x_{34} +x_{14} x_{31} -x_{12} x_{29} +x_{6} x_{26} ~\\-x_{20} x_{37} -x_{14} x_{30} -x_{7} x_{26} ~\\x_{24} x_{42} +x_{22} x_{36} +x_{21} x_{34} +x_{16} x_{29} +x_{15} x_{27} +x_{8} x_{25} ~\\x_{24} x_{47} +x_{22} x_{43} +x_{21} x_{41} +x_{16} x_{35} +x_{15} x_{33} +x_{8} x_{28} ~\\-x_{24} x_{39} -x_{23} x_{33} -x_{22} x_{32} +x_{20} x_{31} -x_{19} x_{28} -x_{18} x_{27} +x_{13} x_{26} -x_{12} x_{25} ~\\x_{24} x_{48} +x_{22} x_{46} +x_{21} x_{45} +x_{16} x_{40} +x_{15} x_{39} +x_{8} x_{32} -28~\\x_{22} x_{46} +x_{19} x_{43} +x_{16} x_{40} +x_{12} x_{36} +x_{11} x_{35} +x_{8} x_{32} +x_{5} x_{29} +x_{4} x_{28} +x_{1} x_{25} -42~\\x_{24} x_{48} +x_{22} x_{46} +x_{21} x_{45} +x_{18} x_{42} +x_{16} x_{40} +x_{15} x_{39} +x_{12} x_{36} +x_{10} x_{34} +x_{8} x_{32} +x_{5} x_{29} +x_{3} x_{27} +x_{1} x_{25} -56~\\x_{24} x_{48} +x_{23} x_{47} +x_{22} x_{46} +x_{21} x_{45} +x_{19} x_{43} +x_{18} x_{42} +x_{17} x_{41} +x_{16} x_{40} +x_{15} x_{39} +x_{12} x_{36} +x_{11} x_{35} +x_{10} x_{34} +x_{9} x_{33} +x_{8} x_{32} +x_{5} x_{29} +x_{4} x_{28} +x_{3} x_{27} +x_{1} x_{25} -84~\\x_{21} x_{45} +x_{17} x_{41} +x_{16} x_{40} +x_{15} x_{39} +x_{11} x_{35} +x_{10} x_{34} +x_{9} x_{33} +x_{8} x_{32} +x_{7} x_{31} +x_{5} x_{29} +x_{4} x_{28} +x_{3} x_{27} +x_{2} x_{26} +x_{1} x_{25} -68~\\x_{15} x_{39} +x_{14} x_{38} +x_{9} x_{33} +x_{8} x_{32} +x_{7} x_{31} +x_{6} x_{30} +x_{4} x_{28} +x_{3} x_{27} +x_{2} x_{26} +x_{1} x_{25} -52~\\x_{20} x_{44} +x_{14} x_{38} +x_{13} x_{37} +x_{7} x_{31} +x_{6} x_{30} +x_{2} x_{26} -36~\\x_{13} x_{37} +x_{6} x_{30} +x_{2} x_{26} -18~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 2, 0, 0, 2)
Length of the weight dual to h: 224
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_7+A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_6+2A^{1}_1 Containing regular semisimple subalgebra number 3: D^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{18\psi}+2V_{16\psi}+3V_{14\psi}+V_{12\psi}+6V_{10\psi}+3V_{8\psi}+3V_{6\psi}+2V_{4\psi}+4V_{2\psi}
+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 18h_{8}+34h_{7}+50h_{6}+66h_{5}+80h_{4}+54h_{3}+40h_{2}+28h_{1}\)
\( e = -2179932399276223/1633719824936606g_{39}+1/17g_{35}+3/2g_{34}+634582057180277/6534879299746424g_{33}+481276620905319/1633719824936606g_{31}+1493389096209951/32674396498732120g_{25}+1395270/1609721g_{22}+130627216257608985/189511499692646296g_{20}+385280/819797g_{16}+1060758/1609721g_{15}+6192432920960145/189511499692646296g_{13}-1715269309002065/189511499692646296g_{12}+256438/819797g_{9}-3986200737431201/189511499692646296g_{5}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{12} x_{28} -x_{9} x_{27} -x_{7} x_{25} -x_{2} x_{22} +x_{1} x_{20} ~\\x_{13} x_{28} +x_{9} x_{26} +x_{8} x_{25} +x_{2} x_{21} ~\\x_{11} x_{28} +x_{8} x_{27} +x_{7} x_{26} -x_{3} x_{24} +x_{2} x_{23} ~\\-x_{14} x_{26} -x_{13} x_{23} -x_{11} x_{21} -x_{8} x_{16} +x_{6} x_{15} ~\\x_{14} x_{27} +x_{12} x_{23} +x_{11} x_{22} +x_{7} x_{16} ~\\x_{14} x_{25} +x_{13} x_{22} +x_{12} x_{21} -x_{10} x_{17} +x_{9} x_{16} ~\\x_{10} x_{24} +x_{3} x_{17} -28~\\x_{13} x_{27} +x_{9} x_{23} +x_{8} x_{22} +x_{4} x_{18} +x_{2} x_{16} -40~\\x_{13} x_{27} +x_{10} x_{24} +x_{9} x_{23} +x_{8} x_{22} +x_{5} x_{19} +x_{3} x_{17} +x_{2} x_{16} -54~\\x_{13} x_{27} +x_{11} x_{25} +x_{9} x_{23} +2x_{8} x_{22} +x_{7} x_{21} +x_{5} x_{19} +x_{4} x_{18} +x_{3} x_{17} +2x_{2} x_{16} -80~\\x_{14} x_{28} +x_{13} x_{27} +x_{12} x_{26} +x_{11} x_{25} +x_{9} x_{23} +x_{8} x_{22} +x_{7} x_{21} +x_{5} x_{19} +x_{4} x_{18} +x_{2} x_{16} -66~\\x_{12} x_{26} +x_{9} x_{23} +x_{7} x_{21} +x_{5} x_{19} +x_{4} x_{18} +x_{2} x_{16} +x_{1} x_{15} -50~\\x_{6} x_{20} +x_{5} x_{19} +x_{4} x_{18} +x_{1} x_{15} -34~\\x_{6} x_{20} +x_{1} x_{15} -18~\\\end{array}\)


h-characteristic: (2, 0, 0, 1, 0, 1, 0, 2)
Length of the weight dual to h: 222
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_7 Containing regular semisimple subalgebra number 2: D^{1}_6+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{18\psi}+V_{16\psi}+2V_{15\psi}+2V_{14\psi}+2V_{11\psi}+3V_{10\psi}+4V_{9\psi}+V_{8\psi}+2V_{6\psi}
+2V_{5\psi}+V_{4\psi}+2V_{2\psi}+2V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 18h_{8}+34h_{7}+50h_{6}+65h_{5}+80h_{4}+54h_{3}+40h_{2}+28h_{1}\)
\( e = -681661875562929885/320547995292679589g_{41}+334555652376772608/320547995292679589g_{35}+35053453758323060/320547995292679589g_{34}+134678147224441875/320547995292679589g_{33}+3/2g_{31}+26096257299267415/641095990585359178g_{28}-11359800176358714/320547995292679589g_{27}+21649668018215960/320547995292679589g_{26}-14773854601802593/641095990585359178g_{20}+579987/377126g_{15}+600474/863405g_{9}+365193/377126g_{8}+325738/863405g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{11} x_{26} -x_{8} x_{25} -x_{6} x_{23} -x_{2} x_{20} +x_{1} x_{18} ~\\x_{12} x_{26} +x_{8} x_{24} +x_{7} x_{23} +x_{2} x_{19} ~\\x_{10} x_{26} +x_{7} x_{25} +x_{6} x_{24} -x_{3} x_{22} +x_{2} x_{21} ~\\-x_{13} x_{24} -x_{12} x_{21} -x_{10} x_{19} -x_{7} x_{15} +x_{5} x_{14} ~\\x_{13} x_{25} +x_{11} x_{21} +x_{10} x_{20} +x_{6} x_{15} ~\\x_{13} x_{23} +x_{12} x_{20} +x_{11} x_{19} -x_{9} x_{16} +x_{8} x_{15} ~\\x_{9} x_{22} +x_{3} x_{16} -28~\\x_{12} x_{25} +x_{8} x_{21} +x_{7} x_{20} +x_{4} x_{17} +x_{2} x_{15} -40~\\x_{10} x_{23} +x_{7} x_{20} +x_{6} x_{19} +x_{4} x_{17} +x_{3} x_{16} +x_{2} x_{15} -54~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +2x_{4} x_{17} +x_{2} x_{15} -80~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +x_{4} x_{17} +x_{2} x_{15} -65~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +x_{2} x_{15} -50~\\x_{11} x_{24} +x_{8} x_{21} +x_{6} x_{19} +x_{2} x_{15} +x_{1} x_{14} -34~\\x_{5} x_{18} +x_{1} x_{14} -18~\\\end{array}\)


h-characteristic: (2, 1, 1, 0, 0, 0, 1, 2)
Length of the weight dual to h: 220
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(V_{18\psi}+4V_{15\psi}+V_{14\psi}+6V_{10\psi}+4V_{9\psi}+V_{6\psi}+4V_{5\psi}+V_{2\psi}+10V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 18h_{8}+34h_{7}+49h_{6}+64h_{5}+79h_{4}+54h_{3}+40h_{2}+28h_{1}\)
\( e = 15/17g_{46}+24/5g_{35}+10g_{34}+15/26g_{17}+9g_{8}+14/5g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{10} -28~\\x_{6} x_{12} +x_{5} x_{11} +x_{1} x_{7} -40~\\x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} -54~\\x_{6} x_{12} +2x_{5} x_{11} +x_{3} x_{9} +x_{1} x_{7} -79~\\2x_{5} x_{11} +x_{3} x_{9} +x_{1} x_{7} -64~\\x_{5} x_{11} +x_{3} x_{9} +x_{1} x_{7} -49~\\x_{3} x_{9} +x_{1} x_{7} -34~\\x_{2} x_{8} -18~\\\end{array}\)


h-characteristic: (0, 0, 0, 2, 0, 0, 0, 2)
Length of the weight dual to h: 176
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: D^{1}_8 Containing regular semisimple subalgebra number 3: E^{1}_6+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{16\psi}+3V_{14\psi}+2V_{12\psi}+6V_{10\psi}+3V_{8\psi}+5V_{6\psi}+4V_{4\psi}+4V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 16h_{8}+30h_{7}+44h_{6}+58h_{5}+72h_{4}+48h_{3}+36h_{2}+24h_{1}\)
\( e = -1061555946374251982473441773215748344901290065/335297915197045302360177196482455026377095718g_{47}-1074200205868265107960072327816629872768336809/167648957598522651180088598241227513188547859g_{41}+8879772543253200871521384986402115218906515061/7041256219137951349563721126131555553919010078g_{40}-87426860740123192063133339679509868012614548/55882985866174217060029532747075837729515953g_{38}+8036243810553342103363106937516589985200203941/3520628109568975674781860563065777776959505039g_{35}+150450698641572552808968703476222656594447884/18627661955391405686676510915691945909838651g_{34}-372111480227253346362536598833490129908005532/55882985866174217060029532747075837729515953g_{33}+3561488374469810917752399706789107406712017658/3520628109568975674781860563065777776959505039g_{32}-3022138032007105427320077534551891116227343/37255323910782811373353021831383891819677302g_{30}+37574213173508119484440655/25779437491028674799853423g_{29}-1152494235442762436537242256948532758743100000/391180901063219519420206729229530864106611671g_{28}+12118607010811126292332038261389824986766174462/3520628109568975674781860563065777776959505039g_{27}+97971710077258350546163164575718292852742988/18627661955391405686676510915691945909838651g_{26}+10261671357828857170867060715997021827984410/18627661955391405686676510915691945909838651g_{25}-1044700047209326006631999657193753525024252737/7041256219137951349563721126131555553919010078g_{24}-40623408235895180525237184775731594409153499/335297915197045302360177196482455026377095718g_{23}+378903476629935899591501/1227592261477555942850163g_{22}-1217591985394615432978189669894114821440596732/391180901063219519420206729229530864106611671g_{20}-2201181590585097649101115954045831682510673098/3520628109568975674781860563065777776959505039g_{19}-741203243176345021099140106164277188390192/18627661955391405686676510915691945909838651g_{18}-52435004639111175366663393124703679386853980/167648957598522651180088598241227513188547859g_{17}+501767049279906613949266684295878494193283011/7041256219137951349563721126131555553919010078g_{16}+1047970137758539399412032/8593145830342891599951141g_{15}+208910217865236978557055895778554546211907212/391180901063219519420206729229530864106611671g_{12}+615680768444559732047331537745588591917099412/3520628109568975674781860563065777776959505039g_{11}+6337802364940882045456721447189450462838704/18627661955391405686676510915691945909838651g_{10}-778817831231162657024584/25779437491028674799853423g_{8}-77254120623601939069432665139865212361982484/391180901063219519420206729229530864106611671g_{4}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{26} x_{56} +x_{24} x_{55} +x_{21} x_{53} +x_{18} x_{51} +x_{17} x_{50} +x_{14} x_{48} +x_{11} x_{44} +x_{10} x_{43} +x_{7} x_{41} +x_{5} x_{37} +x_{4} x_{36} +x_{1} x_{31} ~\\x_{23} x_{55} +x_{18} x_{52} +x_{16} x_{50} +x_{11} x_{45} +x_{9} x_{43} +x_{5} x_{38} +x_{3} x_{36} +x_{1} x_{32} ~\\-x_{13} x_{48} +x_{12} x_{47} -x_{8} x_{43} -x_{7} x_{42} -x_{4} x_{38} -x_{3} x_{37} -x_{1} x_{33} ~\\x_{23} x_{56} +x_{18} x_{54} +x_{16} x_{53} +x_{11} x_{49} +x_{9} x_{48} +x_{5} x_{42} +x_{3} x_{41} +x_{1} x_{35} ~\\-x_{13} x_{53} -x_{8} x_{50} -x_{7} x_{49} +x_{6} x_{47} -x_{4} x_{45} -x_{3} x_{44} -x_{1} x_{39} ~\\-x_{13} x_{56} -x_{8} x_{55} -x_{7} x_{54} -x_{4} x_{52} -x_{3} x_{51} +x_{2} x_{47} -x_{1} x_{46} ~\\-x_{25} x_{56} -x_{22} x_{55} -x_{21} x_{54} -x_{17} x_{52} -x_{16} x_{51} -x_{11} x_{46} +x_{2} x_{34} ~\\-x_{20} x_{56} -x_{15} x_{55} -x_{14} x_{54} -x_{10} x_{52} -x_{9} x_{51} -x_{5} x_{46} +x_{2} x_{40} ~\\x_{28} x_{54} +x_{27} x_{52} +x_{25} x_{49} +x_{23} x_{46} +x_{22} x_{45} +x_{20} x_{42} +x_{16} x_{39} +x_{15} x_{38} +x_{13} x_{35} +x_{9} x_{33} +x_{8} x_{32} +x_{3} x_{29} ~\\x_{27} x_{51} +x_{24} x_{46} +x_{22} x_{44} +x_{17} x_{39} +x_{15} x_{37} +x_{10} x_{33} +x_{8} x_{31} +x_{4} x_{29} ~\\x_{27} x_{56} +x_{24} x_{54} +x_{22} x_{53} +x_{17} x_{49} +x_{15} x_{48} +x_{10} x_{42} +x_{8} x_{41} +x_{4} x_{35} ~\\-x_{20} x_{41} +x_{19} x_{40} -x_{15} x_{36} -x_{14} x_{35} -x_{10} x_{32} -x_{9} x_{31} -x_{5} x_{29} ~\\-x_{20} x_{53} -x_{15} x_{50} -x_{14} x_{49} -x_{10} x_{45} -x_{9} x_{44} +x_{6} x_{40} -x_{5} x_{39} ~\\-x_{28} x_{53} -x_{27} x_{50} -x_{26} x_{49} -x_{24} x_{45} -x_{23} x_{44} -x_{18} x_{39} +x_{6} x_{30} ~\\x_{28} x_{51} +x_{26} x_{46} +x_{25} x_{44} +x_{21} x_{39} +x_{20} x_{37} +x_{14} x_{33} +x_{13} x_{31} +x_{7} x_{29} ~\\x_{28} x_{55} +x_{26} x_{52} +x_{25} x_{50} +x_{21} x_{45} +x_{20} x_{43} +x_{14} x_{38} +x_{13} x_{36} +x_{7} x_{32} ~\\-x_{25} x_{41} -x_{22} x_{36} -x_{21} x_{35} +x_{19} x_{34} -x_{17} x_{32} -x_{16} x_{31} -x_{11} x_{29} ~\\-x_{25} x_{48} -x_{22} x_{43} -x_{21} x_{42} -x_{17} x_{38} -x_{16} x_{37} +x_{12} x_{34} -x_{11} x_{33} ~\\-x_{28} x_{48} -x_{27} x_{43} -x_{26} x_{42} -x_{24} x_{38} -x_{23} x_{37} -x_{18} x_{33} +x_{12} x_{30} ~\\-x_{28} x_{41} -x_{27} x_{36} -x_{26} x_{35} -x_{24} x_{32} -x_{23} x_{31} +x_{19} x_{30} -x_{18} x_{29} ~\\x_{28} x_{56} +x_{26} x_{54} +x_{25} x_{53} +x_{21} x_{49} +x_{20} x_{48} +x_{14} x_{42} +x_{13} x_{41} +x_{7} x_{35} -24~\\x_{26} x_{54} +x_{24} x_{52} +x_{21} x_{49} +x_{18} x_{46} +x_{17} x_{45} +x_{14} x_{42} +x_{11} x_{39} +x_{10} x_{38} +x_{7} x_{35} +x_{5} x_{33} +x_{4} x_{32} +x_{1} x_{29} -36~\\x_{28} x_{56} +x_{26} x_{54} +x_{25} x_{53} +x_{23} x_{51} +x_{21} x_{49} +x_{20} x_{48} +x_{18} x_{46} +x_{16} x_{44} +x_{14} x_{42} +x_{13} x_{41} +x_{11} x_{39} +x_{9} x_{37} +x_{7} x_{35} +x_{5} x_{33} +x_{3} x_{31} +x_{1} x_{29} -48~\\x_{28} x_{56} +x_{27} x_{55} +x_{26} x_{54} +x_{25} x_{53} +x_{24} x_{52} +x_{23} x_{51} +x_{22} x_{50} +x_{21} x_{49} +x_{20} x_{48} +x_{18} x_{46} +x_{17} x_{45} +x_{16} x_{44} +x_{15} x_{43} +x_{14} x_{42} +x_{13} x_{41} +x_{11} x_{39} +x_{10} x_{38} +x_{9} x_{37} +x_{8} x_{36} +x_{7} x_{35} +x_{5} x_{33} +x_{4} x_{32} +x_{3} x_{31} +x_{1} x_{29} -72~\\x_{25} x_{53} +x_{22} x_{50} +x_{21} x_{49} +x_{20} x_{48} +x_{17} x_{45} +x_{16} x_{44} +x_{15} x_{43} +x_{14} x_{42} +x_{13} x_{41} +x_{11} x_{39} +x_{10} x_{38} +x_{9} x_{37} +x_{8} x_{36} +x_{7} x_{35} +x_{5} x_{33} +x_{4} x_{32} +x_{3} x_{31} +x_{2} x_{30} +x_{1} x_{29} -58~\\x_{20} x_{48} +x_{15} x_{43} +x_{14} x_{42} +x_{13} x_{41} +x_{10} x_{38} +x_{9} x_{37} +x_{8} x_{36} +x_{7} x_{35} +x_{6} x_{34} +x_{5} x_{33} +x_{4} x_{32} +x_{3} x_{31} +x_{2} x_{30} +x_{1} x_{29} -44~\\x_{13} x_{41} +x_{12} x_{40} +x_{8} x_{36} +x_{7} x_{35} +x_{6} x_{34} +x_{4} x_{32} +x_{3} x_{31} +x_{2} x_{30} +x_{1} x_{29} -30~\\x_{19} x_{47} +x_{12} x_{40} +x_{6} x_{34} +x_{2} x_{30} -16~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 1, 0, 2)
Length of the weight dual to h: 170
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: A^{1}_7+A^{1}_1 Containing regular semisimple subalgebra number 2: E^{1}_6+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{16\psi}+V_{14\psi}+2V_{13\psi}+2V_{12\psi}+2V_{11\psi}+2V_{10\psi}+2V_{9\psi}+3V_{8\psi}+2V_{7\psi}
+V_{6\psi}+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 16h_{8}+30h_{7}+44h_{6}+57h_{5}+70h_{4}+47h_{3}+35h_{2}+24h_{1}\)
\( e = 7g_{41}+1/50g_{31}+7/37g_{28}+15/17g_{27}+3g_{26}+6g_{24}+6/13g_{23}+8/5g_{15}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{14} +x_{2} x_{10} -24~\\x_{8} x_{16} +x_{6} x_{14} +x_{3} x_{11} +x_{1} x_{9} -35~\\x_{8} x_{16} +x_{6} x_{14} +x_{5} x_{13} +x_{2} x_{10} +x_{1} x_{9} -47~\\2x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -70~\\x_{8} x_{16} +x_{7} x_{15} +x_{5} x_{13} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -57~\\x_{7} x_{15} +x_{5} x_{13} +x_{3} x_{11} +x_{1} x_{9} -44~\\x_{7} x_{15} +x_{4} x_{12} +x_{1} x_{9} -30~\\x_{4} x_{12} -16~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 2, 0, 2)
Length of the weight dual to h: 168
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: A^{1}_7 Containing regular semisimple subalgebra number 2: E^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(V_{16\psi}+V_{14\psi}+6V_{12\psi}+2V_{10\psi}+7V_{8\psi}+V_{6\psi}+7V_{4\psi}+V_{2\psi}+8V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 16h_{8}+30h_{7}+44h_{6}+56h_{5}+68h_{4}+46h_{3}+34h_{2}+24h_{1}\)
\( e = 7g_{54}+3g_{27}+15/17g_{26}+6/13g_{24}+6g_{23}+8/5g_{15}+7/37g_{14}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} +x_{2} x_{9} -24~\\x_{5} x_{12} +x_{2} x_{9} +x_{1} x_{8} -34~\\x_{6} x_{13} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -46~\\x_{6} x_{13} +x_{5} x_{12} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -68~\\x_{6} x_{13} +x_{5} x_{12} +x_{3} x_{10} +2x_{1} x_{8} -56~\\x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -44~\\x_{7} x_{14} +x_{4} x_{11} +x_{1} x_{8} -30~\\x_{4} x_{11} -16~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 1, 1, 0)
Length of the weight dual to h: 168
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{15\psi}+V_{14\psi}+3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+V_{6\psi}+2V_{5\psi}
+3V_{4\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 15h_{8}+30h_{7}+44h_{6}+57h_{5}+70h_{4}+47h_{3}+35h_{2}+24h_{1}\)
\( e = 7g_{33}+8/5g_{31}+6g_{24}+6/13g_{23}+3g_{22}+15/17g_{21}+7/37g_{20}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} +x_{2} x_{9} -24~\\x_{6} x_{13} +x_{4} x_{11} +x_{1} x_{8} -35~\\x_{6} x_{13} +x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -47~\\x_{7} x_{14} +x_{6} x_{13} +2x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -70~\\x_{7} x_{14} +x_{5} x_{12} +x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -57~\\x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -44~\\x_{5} x_{12} +x_{3} x_{10} -30~\\x_{3} x_{10} -15~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 1, 0, 1)
Length of the weight dual to h: 140
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_5+A^{1}_3 Containing regular semisimple subalgebra number 2: D^{1}_7
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+2V_{13\psi}+V_{12\psi}+2V_{11\psi}+2V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+3V_{6\psi}
+2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+2V_{\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+27h_{7}+40h_{6}+52h_{5}+64h_{4}+43h_{3}+32h_{2}+22h_{1}\)
\( e = g_{35}+3/50g_{34}+3/26g_{33}+8g_{31}+7g_{29}+4/37g_{24}+18/5g_{23}+10/17g_{20}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{15} +x_{3} x_{11} -22~\\x_{8} x_{16} +x_{6} x_{14} +x_{3} x_{11} +x_{1} x_{9} -32~\\x_{7} x_{15} +x_{6} x_{14} +x_{4} x_{12} +x_{3} x_{11} +x_{1} x_{9} -43~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +2x_{1} x_{9} -64~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{2} x_{10} +x_{1} x_{9} -52~\\x_{8} x_{16} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{2} x_{10} -40~\\x_{8} x_{16} +x_{4} x_{12} +x_{2} x_{10} -27~\\x_{2} x_{10} -14~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 2, 0, 0, 2)
Length of the weight dual to h: 128
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_7+A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_6+2A^{1}_1 Containing regular semisimple subalgebra number 3: D^{1}_5+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+2V_{12\psi}+7V_{10\psi}+5V_{8\psi}+5V_{6\psi}+5V_{4\psi}+8V_{2\psi}+V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+26h_{7}+38h_{6}+50h_{5}+60h_{4}+40h_{3}+30h_{2}+20h_{1}\)
\( e = 38488272562541537767213/38198298141094823859369g_{51}+840182909768658/158305132736495g_{48}+1/10g_{47}-12609840446096746186003/9260193488750260329544g_{45}+30658906229611368017251/38198298141094823859369g_{44}+2988768024730975530419/9260193488750260329544g_{37}+124348677853769/158305132736495g_{35}-24251080846905390293645/13890290233125390494316g_{33}+28836336535121011095/203724256752505727249968g_{32}-62013071466099/158305132736495g_{28}+95623148847474242715471/74081547910002082636352g_{26}-7438619408884300672091/13890290233125390494316g_{25}+12665311226399788821705/203724256752505727249968g_{24}-1572447149/3337306477g_{22}-15644096460127887749103/74081547910002082636352g_{18}+2840866931/3337306477g_{15}+4947184236958357217249/148163095820004165272704g_{13}+6127167766576934654015/148163095820004165272704g_{5}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{16} x_{36} -x_{13} x_{35} -x_{11} x_{33} -x_{8} x_{30} -x_{6} x_{28} -x_{2} x_{25} +x_{1} x_{23} ~\\x_{17} x_{36} +x_{13} x_{34} -x_{12} x_{33} -x_{8} x_{29} -x_{7} x_{28} -x_{2} x_{24} ~\\x_{10} x_{33} +x_{9} x_{32} +x_{7} x_{30} +x_{6} x_{29} +x_{2} x_{26} ~\\x_{10} x_{36} -x_{7} x_{35} +x_{6} x_{34} +x_{3} x_{32} -x_{2} x_{31} ~\\x_{15} x_{36} -x_{12} x_{35} +x_{11} x_{34} -x_{8} x_{31} -x_{3} x_{27} ~\\-x_{18} x_{34} -x_{17} x_{31} -x_{15} x_{29} -x_{12} x_{26} -x_{10} x_{24} -x_{7} x_{20} +x_{5} x_{19} ~\\x_{18} x_{35} +x_{16} x_{31} -x_{15} x_{30} -x_{11} x_{26} -x_{10} x_{25} -x_{6} x_{20} ~\\x_{15} x_{28} +x_{14} x_{27} +x_{12} x_{25} +x_{11} x_{24} +x_{8} x_{20} ~\\x_{18} x_{33} -x_{17} x_{30} +x_{16} x_{29} -x_{13} x_{26} -x_{9} x_{21} ~\\x_{18} x_{28} -x_{17} x_{25} +x_{16} x_{24} +x_{14} x_{21} -x_{13} x_{20} ~\\x_{17} x_{35} +x_{13} x_{31} +x_{12} x_{30} +x_{8} x_{26} +x_{7} x_{25} +x_{4} x_{22} +x_{2} x_{20} -20~\\x_{15} x_{33} +x_{12} x_{30} +x_{11} x_{29} +x_{10} x_{28} +x_{8} x_{26} +x_{7} x_{25} +x_{6} x_{24} +x_{4} x_{22} +x_{3} x_{21} +x_{2} x_{20} -30~\\x_{17} x_{35} +x_{13} x_{31} +x_{12} x_{30} +x_{10} x_{28} +x_{9} x_{27} +x_{8} x_{26} +2x_{7} x_{25} +x_{6} x_{24} +x_{4} x_{22} +x_{3} x_{21} +2x_{2} x_{20} -40~\\x_{17} x_{35} +x_{15} x_{33} +x_{14} x_{32} +x_{13} x_{31} +2x_{12} x_{30} +x_{11} x_{29} +x_{10} x_{28} +x_{9} x_{27} +2x_{8} x_{26} +2x_{7} x_{25} +x_{6} x_{24} +x_{4} x_{22} +2x_{3} x_{21} +2x_{2} x_{20} -60~\\x_{18} x_{36} +x_{17} x_{35} +x_{16} x_{34} +x_{15} x_{33} +x_{14} x_{32} +x_{13} x_{31} +x_{12} x_{30} +x_{11} x_{29} +x_{10} x_{28} +x_{9} x_{27} +x_{8} x_{26} +x_{7} x_{25} +x_{6} x_{24} +x_{4} x_{22} +x_{3} x_{21} +x_{2} x_{20} -50~\\x_{16} x_{34} +x_{14} x_{32} +x_{13} x_{31} +x_{11} x_{29} +x_{9} x_{27} +x_{8} x_{26} +x_{6} x_{24} +x_{4} x_{22} +x_{3} x_{21} +x_{2} x_{20} +x_{1} x_{19} -38~\\x_{14} x_{32} +x_{9} x_{27} +x_{5} x_{23} +x_{4} x_{22} +x_{3} x_{21} +x_{1} x_{19} -26~\\x_{5} x_{23} +x_{1} x_{19} -14~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 1, 0, 2)
Length of the weight dual to h: 126
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_7 Containing regular semisimple subalgebra number 2: D^{1}_6+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+V_{12\psi}+2V_{11\psi}+4V_{10\psi}+4V_{9\psi}+2V_{8\psi}+2V_{7\psi}+3V_{6\psi}+2V_{5\psi}+2V_{4\psi}
+4V_{3\psi}+4V_{2\psi}+2V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+26h_{7}+38h_{6}+49h_{5}+60h_{4}+40h_{3}+30h_{2}+20h_{1}\)
\( e = 249384576069799/28923190369320g_{47}-98294082739/251876657825g_{44}-92342226508759/14461595184660g_{41}-1652072924287061/188000737400580g_{40}-1265094269611/106051698020840g_{38}-37832684717/503753315650g_{37}+282919688055754/47000184350145g_{35}+9220866033959/4820531728220g_{34}-4491792568817/53025849010420g_{33}+335464526190905/137867207427092g_{32}+29020212191/251876657825g_{31}-21326169442299/12533382493372g_{28}-49377628135402/34466801856773g_{27}+57647477019/964106345644g_{26}+4651257826203/12533382493372g_{20}+12102706/4585829g_{15}+5209890/4585829g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{15} x_{34} -x_{12} x_{33} -x_{10} x_{31} -x_{7} x_{28} -x_{5} x_{26} -x_{2} x_{23} +x_{1} x_{21} ~\\x_{16} x_{34} +x_{12} x_{32} +x_{11} x_{31} +x_{7} x_{27} +x_{6} x_{26} +x_{2} x_{22} ~\\x_{9} x_{31} +x_{8} x_{30} +x_{6} x_{28} +x_{5} x_{27} +x_{2} x_{24} ~\\x_{9} x_{34} +x_{6} x_{33} +x_{5} x_{32} -x_{3} x_{30} +x_{2} x_{29} ~\\x_{14} x_{34} +x_{11} x_{33} +x_{10} x_{32} +x_{7} x_{29} +x_{3} x_{25} ~\\-x_{17} x_{32} -x_{16} x_{29} -x_{14} x_{27} -x_{11} x_{24} -x_{9} x_{22} -x_{6} x_{19} +x_{4} x_{18} ~\\x_{17} x_{33} +x_{15} x_{29} +x_{14} x_{28} +x_{10} x_{24} +x_{9} x_{23} +x_{5} x_{19} ~\\x_{14} x_{26} +x_{13} x_{25} +x_{11} x_{23} +x_{10} x_{22} +x_{7} x_{19} ~\\x_{17} x_{31} +x_{16} x_{28} +x_{15} x_{27} +x_{12} x_{24} +x_{8} x_{20} ~\\x_{17} x_{26} +x_{16} x_{23} +x_{15} x_{22} -x_{13} x_{20} +x_{12} x_{19} ~\\x_{9} x_{26} +x_{8} x_{25} +x_{6} x_{23} +x_{5} x_{22} +x_{3} x_{20} +x_{2} x_{19} -20~\\x_{16} x_{33} +x_{13} x_{30} +x_{12} x_{29} +x_{11} x_{28} +x_{8} x_{25} +x_{7} x_{24} +x_{6} x_{23} +x_{3} x_{20} +x_{2} x_{19} -30~\\x_{14} x_{31} +x_{13} x_{30} +x_{11} x_{28} +x_{10} x_{27} +x_{9} x_{26} +x_{8} x_{25} +x_{7} x_{24} +x_{6} x_{23} +x_{5} x_{22} +2x_{3} x_{20} +x_{2} x_{19} -40~\\x_{17} x_{34} +x_{16} x_{33} +x_{15} x_{32} +x_{14} x_{31} +2x_{13} x_{30} +x_{12} x_{29} +x_{11} x_{28} +x_{10} x_{27} +x_{9} x_{26} +2x_{8} x_{25} +x_{7} x_{24} +x_{6} x_{23} +x_{5} x_{22} +2x_{3} x_{20} +x_{2} x_{19} -60~\\x_{17} x_{34} +x_{16} x_{33} +x_{15} x_{32} +x_{14} x_{31} +x_{13} x_{30} +x_{12} x_{29} +x_{11} x_{28} +x_{10} x_{27} +x_{9} x_{26} +x_{8} x_{25} +x_{7} x_{24} +x_{6} x_{23} +x_{5} x_{22} +x_{3} x_{20} +x_{2} x_{19} -49~\\x_{17} x_{34} +x_{16} x_{33} +x_{15} x_{32} +x_{14} x_{31} +x_{12} x_{29} +x_{11} x_{28} +x_{10} x_{27} +x_{9} x_{26} +x_{7} x_{24} +x_{6} x_{23} +x_{5} x_{22} +x_{2} x_{19} -38~\\x_{15} x_{32} +x_{12} x_{29} +x_{10} x_{27} +x_{7} x_{24} +x_{5} x_{22} +x_{2} x_{19} +x_{1} x_{18} -26~\\x_{4} x_{21} +x_{1} x_{18} -14~\\\end{array}\)


h-characteristic: (0, 1, 1, 0, 0, 0, 1, 2)
Length of the weight dual to h: 124
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_5+2A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+4V_{11\psi}+2V_{10\psi}+4V_{9\psi}+5V_{8\psi}+2V_{6\psi}+4V_{5\psi}+4V_{3\psi}+6V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+26h_{7}+37h_{6}+48h_{5}+59h_{4}+40h_{3}+30h_{2}+20h_{1}\)
\( e = g_{46}+1/26g_{45}+18/5g_{40}+8g_{34}+1/37g_{30}+10/17g_{17}+7g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{6} x_{13} +x_{3} x_{10} -20~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{1} x_{8} -30~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} -40~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +2x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -59~\\x_{7} x_{14} +x_{6} x_{13} +2x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -48~\\x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -37~\\x_{3} x_{10} +x_{1} x_{8} -26~\\x_{2} x_{9} -14~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 1, 0, 1, 2)
Length of the weight dual to h: 122
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_5+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+2V_{11\psi}+5V_{10\psi}+4V_{9\psi}+3V_{8\psi}+2V_{7\psi}+V_{6\psi}+2V_{5\psi}+4V_{4\psi}+2V_{3\psi}
+2V_{2\psi}+6V_{\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+26h_{7}+37h_{6}+48h_{5}+58h_{4}+39h_{3}+29h_{2}+20h_{1}\)
\( e = g_{51}+8g_{48}+1/26g_{46}+10/17g_{37}+18/5g_{21}+7g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{11} +x_{4} x_{10} -20~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{1} x_{7} -29~\\x_{6} x_{12} +x_{5} x_{11} +2x_{4} x_{10} +x_{1} x_{7} -39~\\2x_{6} x_{12} +2x_{5} x_{11} +2x_{4} x_{10} +2x_{1} x_{7} -58~\\2x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -48~\\x_{6} x_{12} +x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -37~\\x_{3} x_{9} +x_{1} x_{7} -26~\\x_{2} x_{8} -14~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 0, 2, 2)
Length of the weight dual to h: 120
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_5
sl(2)-module decomposition of the ambient Lie algebra: \(V_{14\psi}+9V_{10\psi}+7V_{8\psi}+V_{6\psi}+8V_{4\psi}+V_{2\psi}+21V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 14h_{8}+26h_{7}+36h_{6}+46h_{5}+56h_{4}+38h_{3}+28h_{2}+20h_{1}\)
\( e = g_{69}+8g_{60}+10/17g_{32}+7g_{8}+18/5g_{7}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{10} +x_{4} x_{9} -20~\\2x_{4} x_{9} +x_{1} x_{6} -28~\\x_{5} x_{10} +2x_{4} x_{9} +x_{1} x_{6} -38~\\x_{5} x_{10} +3x_{4} x_{9} +2x_{1} x_{6} -56~\\x_{5} x_{10} +2x_{4} x_{9} +2x_{1} x_{6} -46~\\x_{5} x_{10} +x_{4} x_{9} +2x_{1} x_{6} -36~\\x_{3} x_{8} +x_{1} x_{6} -26~\\x_{2} x_{7} -14~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 1, 0, 0)
Length of the weight dual to h: 114
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_6+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{12\psi}+2V_{11\psi}+V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+4V_{5\psi}+3V_{4\psi}+2V_{3\psi}
+2V_{2\psi}+2V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 12h_{8}+24h_{7}+36h_{6}+47h_{5}+58h_{4}+39h_{3}+29h_{2}+20h_{1}\)
\( e = 6g_{50}+3/13g_{36}+12/5g_{34}+1/37g_{31}+6/5g_{27}+5g_{24}+10/17g_{23}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{12} +x_{2} x_{9} -20~\\x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -29~\\x_{7} x_{14} +x_{5} x_{12} +x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -39~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -58~\\x_{7} x_{14} +x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -47~\\x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -36~\\x_{6} x_{13} +x_{3} x_{10} +x_{1} x_{8} -24~\\x_{6} x_{13} +x_{1} x_{8} -12~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 2, 0, 0)
Length of the weight dual to h: 112
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2D^{1}_4 Containing regular semisimple subalgebra number 2: A^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{12\psi}+5V_{10\psi}+3V_{8\psi}+13V_{6\psi}+3V_{4\psi}+5V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 12h_{8}+24h_{7}+36h_{6}+46h_{5}+56h_{4}+38h_{3}+28h_{2}+20h_{1}\)
\( e = 6g_{62}+6/5g_{35}+6/17g_{34}+6/37g_{33}+5/13g_{24}+5g_{23}+3/25g_{22}+3/5g_{20}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{14} +x_{2} x_{10} -20~\\x_{7} x_{15} +x_{5} x_{13} +x_{2} x_{10} +x_{1} x_{9} -28~\\x_{7} x_{15} +x_{6} x_{14} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -38~\\x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +2x_{1} x_{9} -56~\\x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +2x_{1} x_{9} -46~\\x_{8} x_{16} +x_{7} x_{15} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +x_{1} x_{9} -36~\\x_{8} x_{16} +x_{5} x_{13} +x_{3} x_{11} +x_{1} x_{9} -24~\\x_{8} x_{16} +x_{1} x_{9} -12~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 2, 0, 0, 0)
Length of the weight dual to h: 80
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 10
Containing regular semisimple subalgebra number 1: E^{1}_8 Containing regular semisimple subalgebra number 2: D^{1}_8 Containing regular semisimple subalgebra number 3: E^{1}_7+A^{1}_1 Containing regular semisimple subalgebra number 4: E^{1}_6+A^{1}_2 Containing regular semisimple subalgebra number 5: D^{1}_6+2A^{1}_1 Containing regular semisimple subalgebra number 6: D^{1}_5+A^{1}_3 Containing regular semisimple subalgebra number 7: A^{1}_5+A^{1}_2+A^{1}_1 Containing regular semisimple subalgebra number 8: 2D^{1}_4 Containing regular semisimple subalgebra number 9: 2D^{1}_4 Containing regular semisimple subalgebra number 10: 2A^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(4V_{10\psi}+6V_{8\psi}+10V_{6\psi}+10V_{4\psi}+10V_{2\psi}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+20h_{7}+30h_{6}+40h_{5}+48h_{4}+32h_{3}+24h_{2}+16h_{1}\)
\( e = -1817483199688992058259714340394603652151745554267276407667151785130206143/7003451853884356753630106524905098697207387249044547205588639908006265414g_{66}+3245612922232513569495182954902734992249941813180242738777650782731231759/35017259269421783768150532624525493486036936245222736027943199540031327070g_{61}+14168412028290245844751548453593676981322779594338695951237519747009567729/56027614831074854029040852199240789577659097992356377644709119264050123312g_{58}+37458009121971505812031516709728943625644442598617796433929636784903292529/28013807415537427014520426099620394788829548996178188822354559632025061656g_{56}-170336019734968097636007979440211486354170463658903135152352828101630035/3501725926942178376815053262452549348603693624522273602794319954003132707g_{55}-18268281844645517323186486388631363753176017038371376201727544439001073643/140069037077687135072602130498101973944147744980890944111772798160125308280g_{53}-4224147509354737471058974076287527793205511276371808169861779131961065769/56027614831074854029040852199240789577659097992356377644709119264050123312g_{51}-5299994951171507094618358169446069467116906633852706026911263626911117211/7003451853884356753630106524905098697207387249044547205588639908006265414g_{50}+992322112836653302108246503692484688837511947308603587755209547288730293/35017259269421783768150532624525493486036936245222736027943199540031327070g_{49}-295146878127339962989404960738508771868044586827003397960441538583157131007/224110459324299416116163408796963158310636391969425510578836477056200493248g_{48}+921993032245336046834913308046739458525203667358370320512874191609864197/14006903707768713507260213049810197394414774498089094411177279816012530828g_{47}+9911195435849484544449861948582755214522757844436275517234607890737197303/140069037077687135072602130498101973944147744980890944111772798160125308280g_{45}+36612546494997984807581606899819333916425454654100524566003985227315177/3501725926942178376815053262452549348603693624522273602794319954003132707g_{44}+1888513697500137449268562172069413366358378261054083330432067013648808395/7003451853884356753630106524905098697207387249044547205588639908006265414g_{43}+2706681676270627988904574452972625003473290277799499755196677644576994677/14006903707768713507260213049810197394414774498089094411177279816012530828g_{42}+52255819329426645718121689123053029542365519812271700970564786446098860641/56027614831074854029040852199240789577659097992356377644709119264050123312g_{41}-4286944320398845036348329784623708078847956232105197971200512706424033687/280138074155374270145204260996203947888295489961781888223545596320250616560g_{40}+52574590445802639014044586167796535738409406580341177827260384534875461383/224110459324299416116163408796963158310636391969425510578836477056200493248g_{39}-532632512006033770484346993392334230231780289917184535228469841335586209/14006903707768713507260213049810197394414774498089094411177279816012530828g_{38}-62036619151988130424254479942967993815268675764801358299399365073702093/3501725926942178376815053262452549348603693624522273602794319954003132707g_{37}-15979265941210658024440054091866359678958839003324362912581924707024433381/140069037077687135072602130498101973944147744980890944111772798160125308280g_{36}-19142196696944377897110184558017998495102159734120797852967530979871198583/56027614831074854029040852199240789577659097992356377644709119264050123312g_{35}-15695415117686307276082611137852444797399076196443546309694342535120062419/56027614831074854029040852199240789577659097992356377644709119264050123312g_{34}-17534728545550542413517237054371534983553696339628880493782640842255312089/56027614831074854029040852199240789577659097992356377644709119264050123312g_{33}+481684645677119773200160684713133133783529886829510725121635626140473087/280138074155374270145204260996203947888295489961781888223545596320250616560g_{32}+772431179574968149597375312362757209106489721475634509609867074222927821/14006903707768713507260213049810197394414774498089094411177279816012530828g_{31}+37280307422105428033068154552762258076055360869921884044610189902108682/3501725926942178376815053262452549348603693624522273602794319954003132707g_{30}+220434775277035579718121927185917907380137803783201136808110981670685179/7003451853884356753630106524905098697207387249044547205588639908006265414g_{29}+183308924288298416988877144515460124686262251581849123507386082984815626319/1120552296621497080580817043984815791553181959847127552894182385281002466240g_{28}+7930675018065990242276653346771449594471096915861730994573087611627269743/56027614831074854029040852199240789577659097992356377644709119264050123312g_{27}+6516418421566593200438942779294403633412357851517406550867728190142180951/56027614831074854029040852199240789577659097992356377644709119264050123312g_{26}+97917433634605633908778357481755281456008959367317634754881488352066611/3501725926942178376815053262452549348603693624522273602794319954003132707g_{25}+963724277858187777218102089344069000089179457437436273633212364168265/3501725926942178376815053262452549348603693624522273602794319954003132707g_{24}-2049857597172457597204799799453777321991768260077263200904472653277729453/56027614831074854029040852199240789577659097992356377644709119264050123312g_{21}-121200127701544076995450697957336398185191875548030333641728984848622826359/1120552296621497080580817043984815791553181959847127552894182385281002466240g_{20}-82149381530470171828270521873248553857086238270976784042975788060721863/3501725926942178376815053262452549348603693624522273602794319954003132707g_{19}-44911106488180351658891499274875459186475663377434975392924629858291507/7003451853884356753630106524905098697207387249044547205588639908006265414g_{18}+2376563016839254489759614026477939174895374612510737435441557783731971813/56027614831074854029040852199240789577659097992356377644709119264050123312g_{13}+378647501928533301051036389394218423001016336818614759161161558946676187/14006903707768713507260213049810197394414774498089094411177279816012530828g_{12}-52469883265731838738082074150689779350624823098978109852341291624975407/3501725926942178376815053262452549348603693624522273602794319954003132707g_{5}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{36} x_{79} +x_{33} x_{77} +x_{30} x_{75} +x_{25} x_{72} +x_{22} x_{69} +x_{17} x_{64} +x_{14} x_{61} +x_{13} x_{60} +x_{9} x_{56} +x_{7} x_{52} +x_{3} x_{46} +x_{1} x_{42} ~\\-x_{28} x_{74} -x_{21} x_{69} -x_{16} x_{64} -x_{14} x_{62} -x_{9} x_{57} -x_{8} x_{55} -x_{5} x_{51} -x_{4} x_{50} -x_{2} x_{46} -x_{1} x_{43} ~\\x_{31} x_{79} +x_{27} x_{77} +x_{23} x_{75} +x_{19} x_{72} +x_{15} x_{69} -x_{13} x_{66} +x_{11} x_{64} +x_{8} x_{61} -x_{7} x_{58} +x_{5} x_{56} -x_{3} x_{50} -x_{1} x_{44} ~\\-x_{36} x_{80} -x_{30} x_{78} +x_{26} x_{77} -x_{22} x_{74} +x_{18} x_{72} -x_{14} x_{68} -x_{13} x_{67} +x_{10} x_{64} -x_{7} x_{59} +x_{4} x_{56} -x_{3} x_{51} -x_{1} x_{45} ~\\-x_{28} x_{78} -x_{21} x_{75} -x_{16} x_{72} -x_{14} x_{70} -x_{9} x_{65} -x_{8} x_{63} -x_{5} x_{59} -x_{4} x_{58} -x_{2} x_{52} -x_{1} x_{47} ~\\x_{33} x_{80} +x_{26} x_{79} +x_{25} x_{78} +x_{18} x_{75} +x_{17} x_{74} -x_{13} x_{71} +x_{10} x_{69} +x_{9} x_{68} -x_{7} x_{63} +x_{4} x_{61} -x_{3} x_{55} -x_{1} x_{48} ~\\-x_{31} x_{80} -x_{23} x_{78} +x_{20} x_{77} -x_{15} x_{74} +x_{13} x_{73} +x_{12} x_{72} -x_{8} x_{68} +x_{7} x_{65} +x_{6} x_{64} +x_{3} x_{57} +x_{2} x_{56} +x_{1} x_{49} ~\\-x_{28} x_{80} -x_{21} x_{79} -x_{16} x_{77} -x_{14} x_{76} -x_{9} x_{73} -x_{8} x_{71} -x_{5} x_{67} -x_{4} x_{66} -x_{2} x_{60} -x_{1} x_{53} ~\\x_{27} x_{80} +x_{20} x_{79} +x_{19} x_{78} +x_{13} x_{76} +x_{12} x_{75} +x_{11} x_{74} +x_{7} x_{70} +x_{6} x_{69} +x_{5} x_{68} +x_{3} x_{62} +x_{2} x_{61} +x_{1} x_{54} ~\\x_{39} x_{76} +x_{37} x_{73} +x_{35} x_{70} +x_{32} x_{65} +x_{29} x_{62} +x_{24} x_{57} +x_{21} x_{54} +x_{20} x_{53} +x_{16} x_{49} +x_{12} x_{47} +x_{6} x_{43} +x_{2} x_{41} ~\\x_{31} x_{76} +x_{27} x_{73} +x_{23} x_{70} +x_{20} x_{66} +x_{19} x_{65} +x_{15} x_{62} +x_{12} x_{58} +x_{11} x_{57} +x_{8} x_{54} +x_{6} x_{50} +x_{5} x_{49} +x_{2} x_{44} ~\\x_{39} x_{80} +x_{35} x_{78} +x_{29} x_{74} +x_{26} x_{73} +x_{21} x_{68} +x_{20} x_{67} +x_{18} x_{65} +x_{12} x_{59} +x_{10} x_{57} +x_{6} x_{51} +x_{4} x_{49} +x_{2} x_{45} ~\\x_{37} x_{80} +x_{32} x_{78} -x_{26} x_{76} +x_{24} x_{74} -x_{20} x_{71} -x_{18} x_{70} +x_{16} x_{68} -x_{12} x_{63} -x_{10} x_{62} -x_{6} x_{55} -x_{4} x_{54} -x_{2} x_{48} ~\\-x_{34} x_{68} -x_{29} x_{61} -x_{24} x_{56} -x_{22} x_{54} -x_{17} x_{49} -x_{15} x_{48} -x_{11} x_{45} -x_{10} x_{44} -x_{6} x_{42} -x_{3} x_{41} ~\\-x_{34} x_{78} -x_{29} x_{75} -x_{24} x_{72} -x_{22} x_{70} -x_{17} x_{65} -x_{15} x_{63} -x_{11} x_{59} -x_{10} x_{58} -x_{6} x_{52} -x_{3} x_{47} ~\\-x_{34} x_{80} -x_{29} x_{79} -x_{24} x_{77} -x_{22} x_{76} -x_{17} x_{73} -x_{15} x_{71} -x_{11} x_{67} -x_{10} x_{66} -x_{6} x_{60} -x_{3} x_{53} ~\\x_{39} x_{71} +x_{37} x_{67} +x_{35} x_{63} +x_{32} x_{59} +x_{29} x_{55} -x_{26} x_{53} +x_{24} x_{51} +x_{21} x_{48} -x_{18} x_{47} +x_{16} x_{45} -x_{10} x_{43} -x_{4} x_{41} ~\\x_{36} x_{71} +x_{33} x_{67} +x_{30} x_{63} +x_{26} x_{60} +x_{25} x_{59} +x_{22} x_{55} +x_{18} x_{52} +x_{17} x_{51} +x_{14} x_{48} +x_{10} x_{46} +x_{9} x_{45} +x_{4} x_{42} ~\\-x_{40} x_{76} -x_{38} x_{70} +x_{37} x_{66} -x_{34} x_{62} +x_{32} x_{58} -x_{28} x_{54} -x_{27} x_{53} +x_{24} x_{50} -x_{19} x_{47} +x_{16} x_{44} -x_{11} x_{43} -x_{5} x_{41} ~\\x_{40} x_{79} +x_{38} x_{75} +x_{34} x_{69} +x_{33} x_{66} +x_{28} x_{61} +x_{27} x_{60} +x_{25} x_{58} +x_{19} x_{52} +x_{17} x_{50} +x_{11} x_{46} +x_{9} x_{44} +x_{5} x_{42} ~\\x_{37} x_{79} +x_{33} x_{76} +x_{32} x_{75} +x_{27} x_{71} +x_{25} x_{70} +x_{24} x_{69} +x_{19} x_{63} +x_{17} x_{62} +x_{16} x_{61} +x_{11} x_{55} +x_{9} x_{54} +x_{5} x_{48} ~\\-x_{38} x_{68} -x_{35} x_{61} -x_{32} x_{56} -x_{30} x_{54} -x_{25} x_{49} -x_{23} x_{48} -x_{19} x_{45} -x_{18} x_{44} -x_{12} x_{42} -x_{7} x_{41} ~\\-x_{38} x_{74} -x_{35} x_{69} -x_{32} x_{64} -x_{30} x_{62} -x_{25} x_{57} -x_{23} x_{55} -x_{19} x_{51} -x_{18} x_{50} -x_{12} x_{46} -x_{7} x_{43} ~\\-x_{38} x_{80} -x_{35} x_{79} -x_{32} x_{77} -x_{30} x_{76} -x_{25} x_{73} -x_{23} x_{71} -x_{19} x_{67} -x_{18} x_{66} -x_{12} x_{60} -x_{7} x_{53} ~\\x_{40} x_{73} +x_{39} x_{66} +x_{38} x_{65} +x_{35} x_{58} +x_{34} x_{57} -x_{31} x_{53} +x_{29} x_{50} +x_{28} x_{49} -x_{23} x_{47} +x_{21} x_{44} -x_{15} x_{43} -x_{8} x_{41} ~\\x_{40} x_{77} +x_{38} x_{72} -x_{36} x_{66} +x_{34} x_{64} -x_{31} x_{60} -x_{30} x_{58} +x_{28} x_{56} -x_{23} x_{52} -x_{22} x_{50} -x_{15} x_{46} -x_{14} x_{44} -x_{8} x_{42} ~\\x_{39} x_{77} +x_{36} x_{73} +x_{35} x_{72} +x_{31} x_{67} +x_{30} x_{65} +x_{29} x_{64} +x_{23} x_{59} +x_{22} x_{57} +x_{21} x_{56} +x_{15} x_{51} +x_{14} x_{49} +x_{8} x_{45} ~\\-x_{40} x_{71} -x_{38} x_{63} +x_{37} x_{60} -x_{34} x_{55} +x_{33} x_{53} +x_{32} x_{52} -x_{28} x_{48} +x_{25} x_{47} +x_{24} x_{46} +x_{17} x_{43} +x_{16} x_{42} +x_{9} x_{41} ~\\-x_{40} x_{68} -x_{39} x_{61} -x_{37} x_{56} -x_{36} x_{54} -x_{33} x_{49} -x_{31} x_{48} -x_{27} x_{45} -x_{26} x_{44} -x_{20} x_{42} -x_{13} x_{41} ~\\-x_{40} x_{74} -x_{39} x_{69} -x_{37} x_{64} -x_{36} x_{62} -x_{33} x_{57} -x_{31} x_{55} -x_{27} x_{51} -x_{26} x_{50} -x_{20} x_{46} -x_{13} x_{43} ~\\-x_{40} x_{78} -x_{39} x_{75} -x_{37} x_{72} -x_{36} x_{70} -x_{33} x_{65} -x_{31} x_{63} -x_{27} x_{59} -x_{26} x_{58} -x_{20} x_{52} -x_{13} x_{47} ~\\x_{40} x_{67} +x_{39} x_{60} +x_{38} x_{59} +x_{36} x_{53} +x_{35} x_{52} +x_{34} x_{51} +x_{30} x_{47} +x_{29} x_{46} +x_{28} x_{45} +x_{22} x_{43} +x_{21} x_{42} +x_{14} x_{41} ~\\x_{40} x_{80} +x_{39} x_{79} +x_{38} x_{78} +x_{36} x_{76} +x_{35} x_{75} +x_{34} x_{74} +x_{31} x_{71} +x_{30} x_{70} +x_{29} x_{69} +x_{28} x_{68} +x_{23} x_{63} +x_{22} x_{62} +x_{21} x_{61} +x_{15} x_{55} +x_{14} x_{54} +x_{8} x_{48} -16~\\x_{39} x_{79} +x_{36} x_{76} +x_{35} x_{75} +x_{31} x_{71} +x_{30} x_{70} +x_{29} x_{69} +x_{26} x_{66} +x_{23} x_{63} +x_{22} x_{62} +x_{21} x_{61} +x_{20} x_{60} +x_{18} x_{58} +x_{15} x_{55} +x_{14} x_{54} +x_{13} x_{53} +x_{12} x_{52} +x_{10} x_{50} +x_{8} x_{48} +x_{7} x_{47} +x_{6} x_{46} +x_{4} x_{44} +x_{3} x_{43} +x_{2} x_{42} +x_{1} x_{41} -24~\\x_{40} x_{80} +x_{39} x_{79} +x_{38} x_{78} +x_{36} x_{76} +x_{35} x_{75} +x_{34} x_{74} +2x_{31} x_{71} +x_{30} x_{70} +x_{29} x_{69} +x_{28} x_{68} +x_{27} x_{67} +2x_{23} x_{63} +x_{22} x_{62} +x_{21} x_{61} +x_{20} x_{60} +x_{19} x_{59} +2x_{15} x_{55} +x_{14} x_{54} +x_{13} x_{53} +x_{12} x_{52} +x_{11} x_{51} +2x_{8} x_{48} +x_{7} x_{47} +x_{6} x_{46} +x_{5} x_{45} +x_{3} x_{43} +x_{2} x_{42} +x_{1} x_{41} -32~\\x_{40} x_{80} +x_{39} x_{79} +x_{38} x_{78} +2x_{36} x_{76} +x_{35} x_{75} +x_{34} x_{74} +x_{33} x_{73} +2x_{31} x_{71} +2x_{30} x_{70} +x_{29} x_{69} +x_{28} x_{68} +x_{27} x_{67} +x_{26} x_{66} +x_{25} x_{65} +2x_{23} x_{63} +2x_{22} x_{62} +x_{21} x_{61} +x_{20} x_{60} +x_{19} x_{59} +x_{18} x_{58} +x_{17} x_{57} +2x_{15} x_{55} +2x_{14} x_{54} +2x_{13} x_{53} +x_{12} x_{52} +x_{11} x_{51} +x_{10} x_{50} +x_{9} x_{49} +2x_{8} x_{48} +2x_{7} x_{47} +x_{6} x_{46} +x_{5} x_{45} +x_{4} x_{44} +2x_{3} x_{43} +x_{2} x_{42} +2x_{1} x_{41} -48~\\x_{40} x_{80} +x_{39} x_{79} +x_{38} x_{78} +x_{37} x_{77} +x_{36} x_{76} +x_{35} x_{75} +x_{34} x_{74} +x_{33} x_{73} +x_{32} x_{72} +x_{31} x_{71} +x_{30} x_{70} +x_{29} x_{69} +x_{28} x_{68} +x_{27} x_{67} +x_{26} x_{66} +x_{25} x_{65} +x_{24} x_{64} +x_{23} x_{63} +x_{22} x_{62} +x_{21} x_{61} +x_{20} x_{60} +x_{19} x_{59} +x_{18} x_{58} +x_{17} x_{57} +x_{16} x_{56} +x_{15} x_{55} +x_{14} x_{54} +x_{13} x_{53} +x_{12} x_{52} +x_{11} x_{51} +x_{10} x_{50} +x_{9} x_{49} +x_{8} x_{48} +x_{7} x_{47} +x_{6} x_{46} +x_{5} x_{45} +x_{4} x_{44} +x_{3} x_{43} +x_{2} x_{42} +x_{1} x_{41} -40~\\x_{38} x_{78} +x_{35} x_{75} +x_{34} x_{74} +x_{32} x_{72} +x_{30} x_{70} +x_{29} x_{69} +x_{28} x_{68} +x_{25} x_{65} +x_{24} x_{64} +x_{23} x_{63} +x_{22} x_{62} +x_{21} x_{61} +x_{19} x_{59} +x_{18} x_{58} +x_{17} x_{57} +x_{16} x_{56} +x_{15} x_{55} +x_{14} x_{54} +x_{12} x_{52} +x_{11} x_{51} +x_{10} x_{50} +x_{9} x_{49} +x_{8} x_{48} +x_{7} x_{47} +x_{6} x_{46} +x_{5} x_{45} +x_{4} x_{44} +x_{3} x_{43} +x_{2} x_{42} +x_{1} x_{41} -30~\\x_{34} x_{74} +x_{29} x_{69} +x_{28} x_{68} +x_{24} x_{64} +x_{22} x_{62} +x_{21} x_{61} +x_{17} x_{57} +x_{16} x_{56} +x_{15} x_{55} +x_{14} x_{54} +x_{11} x_{51} +x_{10} x_{50} +x_{9} x_{49} +x_{8} x_{48} +x_{6} x_{46} +x_{5} x_{45} +x_{4} x_{44} +x_{3} x_{43} +x_{2} x_{42} +x_{1} x_{41} -20~\\x_{28} x_{68} +x_{21} x_{61} +x_{16} x_{56} +x_{14} x_{54} +x_{9} x_{49} +x_{8} x_{48} +x_{5} x_{45} +x_{4} x_{44} +x_{2} x_{42} +x_{1} x_{41} -10~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 1, 0, 0)
Length of the weight dual to h: 78
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: E^{1}_7 Containing regular semisimple subalgebra number 2: D^{1}_6+A^{1}_1 Containing regular semisimple subalgebra number 3: A^{1}_5+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{10\psi}+2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+6V_{5\psi}+4V_{4\psi}+6V_{3\psi}+6V_{2\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+20h_{7}+30h_{6}+39h_{5}+48h_{4}+32h_{3}+24h_{2}+16h_{1}\)
\( e = 53530271443099815166337135775563458/70527034706578121197278255114098603g_{55}-37695270334867284807184542558940789/282108138826312484789113020456394412g_{50}+2529435709802163541605639035612849/282108138826312484789113020456394412g_{49}+403982936760680601109440610822161634/70527034706578121197278255114098603g_{47}+53783490387615/96578925814664g_{44}-306493155501535789917292386407003/70527034706578121197278255114098603g_{43}+1438696742660406129145827733279475/141054069413156242394556510228197206g_{42}-108635337563273869494679420764506770/70527034706578121197278255114098603g_{41}-43848467546421865210749641300333446/70527034706578121197278255114098603g_{40}-197192775990428034615333153940637454/70527034706578121197278255114098603g_{38}-5055497743173/48289462907332g_{37}+898773494620933763892917272411691/282108138826312484789113020456394412g_{36}+20751421562027643287498096514660334/70527034706578121197278255114098603g_{35}+14085912840802908453723529798976754/70527034706578121197278255114098603g_{34}+36401318079633079330892011217167003/70527034706578121197278255114098603g_{33}+19134593945095727448928735228099437/70527034706578121197278255114098603g_{32}+8397780608211/96578925814664g_{31}-1788447397522233845959347271382598/70527034706578121197278255114098603g_{28}-2509145483206436260214799982458976/70527034706578121197278255114098603g_{27}-2129546583572873413937488298874780/70527034706578121197278255114098603g_{26}-615592653714753891738169893121737/70527034706578121197278255114098603g_{20}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{19} x_{42} +x_{17} x_{41} +x_{14} x_{39} +x_{11} x_{37} +x_{10} x_{36} +x_{7} x_{34} +x_{5} x_{30} +x_{4} x_{29} +x_{1} x_{24} ~\\-x_{16} x_{41} -x_{11} x_{38} -x_{9} x_{36} -x_{5} x_{31} -x_{3} x_{29} -x_{1} x_{25} ~\\x_{13} x_{39} +x_{8} x_{36} +x_{7} x_{35} +x_{6} x_{33} +x_{4} x_{31} +x_{3} x_{30} +x_{1} x_{26} ~\\-x_{16} x_{42} -x_{11} x_{40} -x_{9} x_{39} -x_{5} x_{35} -x_{3} x_{34} -x_{1} x_{28} ~\\x_{13} x_{42} +x_{8} x_{41} +x_{7} x_{40} +x_{4} x_{38} +x_{3} x_{37} -x_{2} x_{33} +x_{1} x_{32} ~\\x_{18} x_{42} +x_{15} x_{41} +x_{14} x_{40} +x_{10} x_{38} +x_{9} x_{37} +x_{5} x_{32} +x_{2} x_{27} ~\\x_{21} x_{40} +x_{20} x_{38} +x_{18} x_{35} +x_{16} x_{32} +x_{15} x_{31} +x_{13} x_{28} +x_{9} x_{26} +x_{8} x_{25} +x_{3} x_{22} ~\\-x_{20} x_{37} -x_{17} x_{32} -x_{15} x_{30} -x_{10} x_{26} -x_{8} x_{24} -x_{4} x_{22} ~\\-x_{20} x_{42} -x_{17} x_{40} -x_{15} x_{39} -x_{10} x_{35} -x_{8} x_{34} -x_{4} x_{28} ~\\x_{18} x_{34} +x_{15} x_{29} +x_{14} x_{28} +x_{12} x_{27} +x_{10} x_{25} +x_{9} x_{24} +x_{5} x_{22} ~\\x_{21} x_{39} +x_{20} x_{36} +x_{19} x_{35} +x_{17} x_{31} +x_{16} x_{30} +x_{11} x_{26} +x_{6} x_{23} ~\\-x_{21} x_{37} -x_{19} x_{32} -x_{18} x_{30} -x_{14} x_{26} -x_{13} x_{24} -x_{7} x_{22} ~\\-x_{21} x_{41} -x_{19} x_{38} -x_{18} x_{36} -x_{14} x_{31} -x_{13} x_{29} -x_{7} x_{25} ~\\x_{21} x_{34} +x_{20} x_{29} +x_{19} x_{28} +x_{17} x_{25} +x_{16} x_{24} -x_{12} x_{23} +x_{11} x_{22} ~\\x_{13} x_{34} +x_{8} x_{29} +x_{7} x_{28} +x_{6} x_{27} +x_{4} x_{25} +x_{3} x_{24} +x_{2} x_{23} +x_{1} x_{22} -16~\\x_{19} x_{40} +x_{17} x_{38} +x_{14} x_{35} +x_{12} x_{33} +x_{11} x_{32} +x_{10} x_{31} +x_{7} x_{28} +x_{6} x_{27} +x_{5} x_{26} +x_{4} x_{25} +x_{2} x_{23} +x_{1} x_{22} -24~\\x_{18} x_{39} +x_{15} x_{36} +x_{14} x_{35} +x_{13} x_{34} +x_{12} x_{33} +x_{10} x_{31} +x_{9} x_{30} +x_{8} x_{29} +x_{7} x_{28} +x_{6} x_{27} +x_{5} x_{26} +x_{4} x_{25} +x_{3} x_{24} +2x_{2} x_{23} +x_{1} x_{22} -32~\\x_{21} x_{42} +x_{20} x_{41} +x_{19} x_{40} +x_{18} x_{39} +x_{17} x_{38} +x_{16} x_{37} +x_{15} x_{36} +x_{14} x_{35} +x_{13} x_{34} +2x_{12} x_{33} +x_{11} x_{32} +x_{10} x_{31} +x_{9} x_{30} +x_{8} x_{29} +x_{7} x_{28} +2x_{6} x_{27} +x_{5} x_{26} +x_{4} x_{25} +x_{3} x_{24} +2x_{2} x_{23} +x_{1} x_{22} -48~\\x_{21} x_{42} +x_{20} x_{41} +x_{19} x_{40} +x_{18} x_{39} +x_{17} x_{38} +x_{16} x_{37} +x_{15} x_{36} +x_{14} x_{35} +x_{13} x_{34} +x_{12} x_{33} +x_{11} x_{32} +x_{10} x_{31} +x_{9} x_{30} +x_{8} x_{29} +x_{7} x_{28} +x_{6} x_{27} +x_{5} x_{26} +x_{4} x_{25} +x_{3} x_{24} +x_{2} x_{23} +x_{1} x_{22} -39~\\x_{21} x_{42} +x_{20} x_{41} +x_{19} x_{40} +x_{18} x_{39} +x_{17} x_{38} +x_{16} x_{37} +x_{15} x_{36} +x_{14} x_{35} +x_{13} x_{34} +x_{11} x_{32} +x_{10} x_{31} +x_{9} x_{30} +x_{8} x_{29} +x_{7} x_{28} +x_{5} x_{26} +x_{4} x_{25} +x_{3} x_{24} +x_{1} x_{22} -30~\\x_{21} x_{42} +x_{19} x_{40} +x_{18} x_{39} +x_{16} x_{37} +x_{14} x_{35} +x_{13} x_{34} +x_{11} x_{32} +x_{9} x_{30} +x_{7} x_{28} +x_{5} x_{26} +x_{3} x_{24} +x_{1} x_{22} -20~\\x_{21} x_{42} +x_{19} x_{40} +x_{18} x_{39} +x_{14} x_{35} +x_{13} x_{34} +x_{7} x_{28} -10~\\\end{array}\)


h-characteristic: (0, 1, 1, 0, 0, 0, 1, 0)
Length of the weight dual to h: 76
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_4+A^{1}_3 Containing regular semisimple subalgebra number 2: D^{1}_6
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{10\psi}+4V_{9\psi}+V_{8\psi}+4V_{7\psi}+7V_{6\psi}+4V_{5\psi}+5V_{4\psi}+8V_{3\psi}+3V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+20h_{7}+29h_{6}+38h_{5}+47h_{4}+32h_{3}+24h_{2}+16h_{1}\)
\( e = 6/5g_{46}+3/17g_{45}+2/13g_{43}+6g_{42}+5g_{40}+3/37g_{30}+3/5g_{17}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{5} x_{12} +x_{2} x_{9} -16~\\x_{7} x_{14} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -24~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} -32~\\x_{7} x_{14} +x_{6} x_{13} +2x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -47~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +2x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -38~\\x_{6} x_{13} +x_{5} x_{12} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -29~\\x_{6} x_{13} +x_{2} x_{9} +x_{1} x_{8} -20~\\x_{6} x_{13} +x_{1} x_{8} -10~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 1, 0, 1, 0)
Length of the weight dual to h: 74
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_6+A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_5+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{10\psi}+2V_{9\psi}+4V_{8\psi}+4V_{7\psi}+4V_{6\psi}+6V_{5\psi}+7V_{4\psi}+4V_{3\psi}+4V_{2\psi}+4V_{\psi}
+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+20h_{7}+29h_{6}+38h_{5}+46h_{4}+31h_{3}+23h_{2}+16h_{1}\)
\( e = -45887/66699g_{51}-7368532439494714/7820075754310791g_{50}+1/10g_{46}+34087/66699g_{45}+315603600211008/2606691918103597g_{43}+1098248817862130/7820075754310791g_{42}+8763094555186744/23460227262932373g_{41}+13557585053408/2606691918103597g_{36}+62482711656637/7820075754310791g_{35}+520694505747340/23460227262932373g_{34}-90412/535935g_{30}-126131946916723/7820075754310791g_{28}+72916/535935g_{24}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{11} x_{26} +x_{8} x_{25} +x_{6} x_{23} +x_{2} x_{20} +x_{1} x_{18} ~\\-x_{12} x_{26} -x_{8} x_{24} -x_{7} x_{23} -x_{2} x_{19} ~\\x_{10} x_{26} +x_{7} x_{25} +x_{6} x_{24} +x_{3} x_{22} +x_{2} x_{21} ~\\x_{13} x_{24} +x_{12} x_{21} +x_{10} x_{19} +x_{7} x_{15} +x_{5} x_{14} ~\\-x_{13} x_{25} -x_{11} x_{21} -x_{10} x_{20} -x_{6} x_{15} ~\\x_{13} x_{23} +x_{12} x_{20} +x_{11} x_{19} +x_{9} x_{16} +x_{8} x_{15} ~\\x_{9} x_{22} +x_{5} x_{18} +x_{3} x_{16} +x_{1} x_{14} -16~\\x_{10} x_{23} +x_{7} x_{20} +x_{6} x_{19} +x_{5} x_{18} +x_{4} x_{17} +x_{3} x_{16} +x_{2} x_{15} +x_{1} x_{14} -23~\\x_{11} x_{24} +x_{9} x_{22} +x_{8} x_{21} +x_{6} x_{19} +x_{5} x_{18} +x_{4} x_{17} +x_{3} x_{16} +x_{2} x_{15} +2x_{1} x_{14} -31~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{9} x_{22} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +2x_{5} x_{18} +2x_{4} x_{17} +x_{3} x_{16} +x_{2} x_{15} +2x_{1} x_{14} -46~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{9} x_{22} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +x_{5} x_{18} +2x_{4} x_{17} +x_{3} x_{16} +x_{2} x_{15} +x_{1} x_{14} -38~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +x_{5} x_{18} +x_{4} x_{17} +x_{2} x_{15} +x_{1} x_{14} -29~\\x_{13} x_{26} +x_{12} x_{25} +x_{11} x_{24} +x_{10} x_{23} +x_{8} x_{21} +x_{7} x_{20} +x_{6} x_{19} +x_{2} x_{15} -20~\\x_{12} x_{25} +x_{8} x_{21} +x_{7} x_{20} +x_{2} x_{15} -10~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 0, 2, 0)
Length of the weight dual to h: 72
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: E^{1}_6 Containing regular semisimple subalgebra number 2: A^{1}_5+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{10\psi}+8V_{8\psi}+8V_{6\psi}+15V_{4\psi}+3V_{2\psi}+14V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+20h_{7}+28h_{6}+36h_{5}+44h_{4}+30h_{3}+22h_{2}+16h_{1}\)
\( e = -14232/10811g_{69}+10072/10811g_{63}-7269341935/4204700608g_{50}+12068434175/37842305472g_{43}+272878515/4204700608g_{42}+2880303609/4204700608g_{41}+1035875005/37842305472g_{36}-2412096041/37842305472g_{35}+242415235/4204700608g_{34}-691636051/37842305472g_{28}+3256/9785g_{9}+248/1957g_{1}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{10} x_{24} +x_{7} x_{23} +x_{5} x_{21} +x_{2} x_{18} +x_{1} x_{16} ~\\-x_{11} x_{24} -x_{7} x_{22} -x_{6} x_{21} -x_{2} x_{17} ~\\x_{9} x_{24} +x_{6} x_{23} +x_{5} x_{22} -x_{3} x_{20} +x_{2} x_{19} ~\\x_{12} x_{22} +x_{11} x_{19} +x_{9} x_{17} +x_{6} x_{14} +x_{4} x_{13} ~\\-x_{12} x_{23} -x_{10} x_{19} -x_{9} x_{18} -x_{5} x_{14} ~\\x_{12} x_{21} +x_{11} x_{18} +x_{10} x_{17} -x_{8} x_{15} +x_{7} x_{14} ~\\x_{8} x_{20} +x_{4} x_{16} +x_{3} x_{15} +x_{1} x_{13} -16~\\x_{10} x_{22} +x_{7} x_{19} +x_{5} x_{17} +x_{4} x_{16} +x_{2} x_{14} +2x_{1} x_{13} -22~\\x_{9} x_{21} +x_{6} x_{18} +x_{5} x_{17} +2x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +2x_{1} x_{13} -30~\\x_{12} x_{24} +x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{7} x_{19} +x_{6} x_{18} +x_{5} x_{17} +3x_{4} x_{16} +x_{2} x_{14} +3x_{1} x_{13} -44~\\x_{12} x_{24} +x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{7} x_{19} +x_{6} x_{18} +x_{5} x_{17} +2x_{4} x_{16} +x_{2} x_{14} +2x_{1} x_{13} -36~\\x_{12} x_{24} +x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{7} x_{19} +x_{6} x_{18} +x_{5} x_{17} +x_{4} x_{16} +x_{2} x_{14} +x_{1} x_{13} -28~\\x_{12} x_{24} +x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{7} x_{19} +x_{6} x_{18} +x_{5} x_{17} +x_{2} x_{14} -20~\\x_{11} x_{23} +x_{7} x_{19} +x_{6} x_{18} +x_{2} x_{14} -10~\\\end{array}\)


h-characteristic: (1, 0, 0, 1, 0, 0, 0, 1)
Length of the weight dual to h: 72
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_5+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+4V_{9\psi}+3V_{8\psi}+2V_{7\psi}+5V_{6\psi}+8V_{5\psi}+7V_{4\psi}+4V_{3\psi}+2V_{2\psi}+4V_{\psi}
+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+19h_{7}+28h_{6}+37h_{5}+46h_{4}+31h_{3}+23h_{2}+16h_{1}\)
\( e = 5g_{50}+1/26g_{48}+9/5g_{46}+4g_{40}+5/17g_{36}+4/5g_{23}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{10} +x_{2} x_{8} -16~\\x_{6} x_{12} +x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -23~\\x_{6} x_{12} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -31~\\2x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -46~\\x_{6} x_{12} +x_{5} x_{11} +2x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -37~\\x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -28~\\x_{6} x_{12} +x_{5} x_{11} +x_{2} x_{8} +x_{1} x_{7} -19~\\x_{5} x_{11} +x_{1} x_{7} -10~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 1, 0, 1)
Length of the weight dual to h: 70
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_5
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+2V_{9\psi}+7V_{8\psi}+V_{6\psi}+14V_{5\psi}+7V_{4\psi}+2V_{3\psi}+V_{2\psi}+17V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+19h_{7}+28h_{6}+36h_{5}+44h_{4}+30h_{3}+22h_{2}+16h_{1}\)
\( e = 5g_{62}+9/5g_{60}+4/5g_{24}+4g_{23}+5/17g_{22}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{9} +x_{2} x_{7} -16~\\x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -22~\\x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -30~\\x_{4} x_{9} +2x_{3} x_{8} +x_{2} x_{7} +2x_{1} x_{6} -44~\\x_{4} x_{9} +2x_{3} x_{8} +2x_{1} x_{6} -36~\\x_{5} x_{10} +2x_{3} x_{8} +x_{1} x_{6} -28~\\x_{5} x_{10} +x_{3} x_{8} +x_{1} x_{6} -19~\\x_{5} x_{10} +x_{1} x_{6} -10~\\\end{array}\)


h-characteristic: (0, 0, 1, 0, 0, 1, 0, 1)
Length of the weight dual to h: 68
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_5+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+2V_{9\psi}+3V_{8\psi}+6V_{7\psi}+4V_{6\psi}+6V_{5\psi}+6V_{4\psi}+4V_{3\psi}+7V_{2\psi}+4V_{\psi}
+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+19h_{7}+28h_{6}+36h_{5}+44h_{4}+30h_{3}+22h_{2}+15h_{1}\)
\( e = 2/17g_{52}+1/13g_{48}+853/595g_{47}+6g_{44}-3505/816g_{42}-2/595g_{40}+205/408g_{36}+451/336g_{33}-83/840g_{27}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{18} +x_{3} x_{17} +x_{2} x_{16} ~\\x_{9} x_{13} +x_{8} x_{12} +x_{7} x_{11} ~\\x_{8} x_{17} +x_{5} x_{14} +x_{3} x_{12} +x_{1} x_{10} -15~\\x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -22~\\x_{9} x_{18} +x_{8} x_{17} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +2x_{1} x_{10} -30~\\x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +2x_{6} x_{15} +2x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +2x_{1} x_{10} -44~\\x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +2x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -36~\\x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} -28~\\x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{3} x_{12} +x_{2} x_{11} -19~\\x_{7} x_{16} +x_{2} x_{11} -10~\\\end{array}\)


h-characteristic: (0, 2, 0, 0, 0, 0, 0, 2)
Length of the weight dual to h: 64
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: D^{1}_4+4A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_5+2A^{1}_1 Containing regular semisimple subalgebra number 3: D^{1}_4+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+6V_{8\psi}+14V_{6\psi}+7V_{4\psi}+14V_{2\psi}+8V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+18h_{7}+26h_{6}+34h_{5}+42h_{4}+28h_{3}+22h_{2}+14h_{1}\)
\( e = 6g_{81}+1/17g_{53}+6/5g_{44}+1/50g_{41}+1/26g_{39}+1/37g_{38}+5g_{22}+3/5g_{18}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{15} +x_{5} x_{13} +x_{3} x_{11} +x_{1} x_{9} -14~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +x_{1} x_{9} -22~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +2x_{3} x_{11} +2x_{1} x_{9} -28~\\x_{8} x_{16} +x_{7} x_{15} +2x_{6} x_{14} +2x_{5} x_{13} +x_{4} x_{12} +2x_{3} x_{11} +3x_{1} x_{9} -42~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +3x_{1} x_{9} -34~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{2} x_{10} +2x_{1} x_{9} -26~\\x_{8} x_{16} +x_{5} x_{13} +x_{2} x_{10} +x_{1} x_{9} -18~\\x_{2} x_{10} -10~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 0, 0, 2)
Length of the weight dual to h: 62
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_4+3A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_5+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+3V_{8\psi}+6V_{7\psi}+8V_{6\psi}+6V_{5\psi}+3V_{4\psi}+2V_{3\psi}+7V_{2\psi}+10V_{\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+18h_{7}+26h_{6}+34h_{5}+42h_{4}+28h_{3}+21h_{2}+14h_{1}\)
\( e = 6g_{71}+1/26g_{54}+1/37g_{53}+6/5g_{52}+1/17g_{44}+3/5g_{39}+5g_{15}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -14~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -21~\\x_{7} x_{14} +x_{6} x_{13} +2x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{1} x_{8} -28~\\2x_{7} x_{14} +2x_{6} x_{13} +2x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{1} x_{8} -42~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +2x_{1} x_{8} -34~\\x_{7} x_{14} +x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +2x_{1} x_{8} -26~\\x_{7} x_{14} +x_{6} x_{13} +x_{2} x_{9} +x_{1} x_{8} -18~\\x_{2} x_{9} -10~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 1, 0, 2)
Length of the weight dual to h: 60
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_4+2A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_5
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+V_{8\psi}+8V_{7\psi}+8V_{6\psi}+8V_{5\psi}+V_{4\psi}+8V_{2\psi}+8V_{\psi}+15V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+18h_{7}+26h_{6}+33h_{5}+40h_{4}+27h_{3}+20h_{2}+14h_{1}\)
\( e = 6g_{75}+1/17g_{63}+6/5g_{60}+3/5g_{40}+1/26g_{38}+5g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{1} x_{7} -14~\\x_{6} x_{12} +x_{5} x_{11} +x_{3} x_{9} +2x_{1} x_{7} -20~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +2x_{1} x_{7} -27~\\x_{6} x_{12} +3x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +3x_{1} x_{7} -40~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +2x_{1} x_{7} -33~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +x_{1} x_{7} -26~\\x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -18~\\x_{2} x_{8} -10~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 0, 1, 0)
Length of the weight dual to h: 60
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_4+A^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{9\psi}+3V_{8\psi}+4V_{7\psi}+6V_{6\psi}+6V_{5\psi}+6V_{4\psi}+8V_{3\psi}+6V_{2\psi}+4V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 9h_{8}+18h_{7}+26h_{6}+34h_{5}+42h_{4}+28h_{3}+21h_{2}+14h_{1}\)
\( e = 4g_{57}+3/17g_{43}+3g_{42}+3/37g_{41}+6/5g_{40}+2/5g_{39}+2/13g_{37}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} +x_{3} x_{10} +x_{1} x_{8} -14~\\x_{7} x_{14} +x_{6} x_{13} +x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -21~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{1} x_{8} -28~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +2x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -42~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -34~\\x_{7} x_{14} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -26~\\x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{2} x_{9} -18~\\x_{5} x_{12} +x_{2} x_{9} -9~\\\end{array}\)


h-characteristic: (0, 1, 0, 0, 0, 0, 1, 2)
Length of the weight dual to h: 58
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_4+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+6V_{7\psi}+14V_{6\psi}+6V_{5\psi}+2V_{2\psi}+14V_{\psi}+21V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+18h_{7}+25h_{6}+32h_{5}+39h_{4}+26h_{3}+20h_{2}+13h_{1}\)
\( e = 6g_{81}+1/17g_{69}+6/5g_{58}+3/5g_{34}+5g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{10} +x_{3} x_{8} +x_{1} x_{6} -13~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +x_{1} x_{6} -20~\\2x_{5} x_{10} +2x_{3} x_{8} +2x_{1} x_{6} -26~\\3x_{5} x_{10} +x_{4} x_{9} +2x_{3} x_{8} +3x_{1} x_{6} -39~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +3x_{1} x_{6} -32~\\x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +2x_{1} x_{6} -25~\\x_{4} x_{9} +x_{3} x_{8} +x_{1} x_{6} -18~\\x_{2} x_{7} -10~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 0, 2, 2)
Length of the weight dual to h: 56
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: D^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(V_{10\psi}+26V_{6\psi}+V_{2\psi}+52V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 10h_{8}+18h_{7}+24h_{6}+30h_{5}+36h_{4}+24h_{3}+18h_{2}+12h_{1}\)
\( e = 6g_{97}+6/5g_{60}+5g_{8}+3/5g_{7}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{5} -12~\\x_{3} x_{7} +2x_{1} x_{5} -18~\\x_{3} x_{7} +3x_{1} x_{5} -24~\\2x_{3} x_{7} +4x_{1} x_{5} -36~\\2x_{3} x_{7} +3x_{1} x_{5} -30~\\2x_{3} x_{7} +2x_{1} x_{5} -24~\\x_{4} x_{8} +x_{3} x_{7} +x_{1} x_{5} -18~\\x_{2} x_{6} -10~\\\end{array}\)


h-characteristic: (0, 0, 1, 0, 0, 1, 0, 0)
Length of the weight dual to h: 50
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_4+A^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{8\psi}+4V_{7\psi}+5V_{6\psi}+6V_{5\psi}+10V_{4\psi}+8V_{3\psi}+7V_{2\psi}+6V_{\psi}+3V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{8}+16h_{7}+24h_{6}+31h_{5}+38h_{4}+26h_{3}+19h_{2}+13h_{1}\)
\( e = 4g_{67}+3g_{48}+1/13g_{46}+1/37g_{44}+2/5g_{43}+2/17g_{40}+6/5g_{38}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{5} x_{12} +x_{3} x_{10} +x_{1} x_{8} -13~\\x_{7} x_{14} +x_{6} x_{13} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -19~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -26~\\2x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -38~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -31~\\x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -24~\\x_{5} x_{12} +x_{4} x_{11} +x_{2} x_{9} +x_{1} x_{8} -16~\\x_{4} x_{11} +x_{1} x_{8} -8~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 2, 0, 0)
Length of the weight dual to h: 48
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2D^{1}_4 Containing regular semisimple subalgebra number 2: A^{1}_4+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{8\psi}+13V_{6\psi}+14V_{4\psi}+18V_{2\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{8}+16h_{7}+24h_{6}+30h_{5}+36h_{4}+24h_{3}+18h_{2}+12h_{1}\)
\( e = -21/4g_{82}+1/4g_{77}-965/1216g_{54}-11/736g_{52}+177/1216g_{48}+2g_{47}+31/736g_{45}+29/20g_{33}+477/874g_{29}-1/20g_{27}-73/874g_{22}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{3} x_{21} +x_{2} x_{20} +x_{1} x_{19} ~\\x_{6} x_{24} +x_{5} x_{23} +x_{4} x_{22} ~\\x_{9} x_{15} +x_{8} x_{14} +x_{7} x_{13} ~\\x_{12} x_{18} +x_{11} x_{17} +x_{10} x_{16} ~\\x_{11} x_{23} +x_{8} x_{20} +x_{7} x_{19} +x_{5} x_{17} +x_{2} x_{14} +x_{1} x_{13} -12~\\x_{11} x_{23} +x_{10} x_{22} +x_{7} x_{19} +x_{5} x_{17} +x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +2x_{1} x_{13} -18~\\x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{8} x_{20} +2x_{7} x_{19} +x_{5} x_{17} +x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +2x_{1} x_{13} -24~\\2x_{11} x_{23} +2x_{10} x_{22} +x_{9} x_{21} +x_{8} x_{20} +3x_{7} x_{19} +2x_{5} x_{17} +2x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +3x_{1} x_{13} -36~\\x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{8} x_{20} +2x_{7} x_{19} +x_{6} x_{18} +2x_{5} x_{17} +2x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +2x_{1} x_{13} -30~\\x_{12} x_{24} +x_{11} x_{23} +x_{10} x_{22} +x_{9} x_{21} +x_{8} x_{20} +x_{7} x_{19} +x_{6} x_{18} +x_{5} x_{17} +x_{4} x_{16} +x_{3} x_{15} +x_{2} x_{14} +x_{1} x_{13} -24~\\x_{12} x_{24} +x_{10} x_{22} +x_{8} x_{20} +x_{7} x_{19} +x_{6} x_{18} +x_{4} x_{16} +x_{2} x_{14} +x_{1} x_{13} -16~\\x_{12} x_{24} +x_{7} x_{19} +x_{6} x_{18} +x_{1} x_{13} -8~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 0, 0, 1)
Length of the weight dual to h: 44
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 2A^{1}_3+2A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_4+A^{1}_3 Containing regular semisimple subalgebra number 3: A^{1}_4+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{8\psi}+4V_{7\psi}+5V_{6\psi}+8V_{5\psi}+9V_{4\psi}+8V_{3\psi}+9V_{2\psi}+8V_{\psi}+4V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{8}+15h_{7}+22h_{6}+29h_{5}+36h_{4}+24h_{3}+18h_{2}+12h_{1}\)
\( e = 3g_{71}+3/10g_{59}+1/50g_{48}+1/37g_{46}+3/26g_{45}+3/5g_{44}+4/17g_{43}+2g_{42}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{14} +x_{4} x_{12} +x_{3} x_{11} +x_{1} x_{9} -12~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -18~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +2x_{3} x_{11} +2x_{1} x_{9} -24~\\2x_{8} x_{16} +2x_{7} x_{15} +2x_{6} x_{14} +x_{5} x_{13} +2x_{4} x_{12} +2x_{3} x_{11} +x_{2} x_{10} +2x_{1} x_{9} -36~\\x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +2x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +2x_{1} x_{9} -29~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{2} x_{10} +2x_{1} x_{9} -22~\\x_{8} x_{16} +x_{5} x_{13} +x_{4} x_{12} +x_{2} x_{10} +x_{1} x_{9} -15~\\x_{5} x_{13} +x_{2} x_{10} -8~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 1, 0, 1)
Length of the weight dual to h: 42
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2A^{1}_3+A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_4+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{8\psi}+2V_{7\psi}+7V_{6\psi}+8V_{5\psi}+9V_{4\psi}+8V_{3\psi}+8V_{2\psi}+8V_{\psi}+9V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{8}+15h_{7}+22h_{6}+28h_{5}+34h_{4}+23h_{3}+17h_{2}+12h_{1}\)
\( e = 3g_{75}+1/37g_{60}+3/5g_{52}+3/10g_{51}+2g_{43}+4/17g_{42}+3/26g_{40}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -12~\\x_{7} x_{14} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{1} x_{8} -17~\\x_{7} x_{14} +x_{6} x_{13} +2x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -23~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +x_{2} x_{9} +3x_{1} x_{8} -34~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -28~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -22~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{2} x_{9} +x_{1} x_{8} -15~\\x_{5} x_{12} +x_{2} x_{9} -8~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 0, 0, 2)
Length of the weight dual to h: 40
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 2A^{1}_3 Containing regular semisimple subalgebra number 2: A^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(V_{8\psi}+11V_{6\psi}+21V_{4\psi}+11V_{2\psi}+24V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 8h_{8}+14h_{7}+20h_{6}+26h_{5}+32h_{4}+22h_{3}+16h_{2}+12h_{1}\)
\( e = 3g_{93}+3/10g_{52}+4/17g_{43}+2g_{42}+3/5g_{40}+3/26g_{23}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{12} +x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -12~\\x_{6} x_{12} +x_{4} x_{10} +x_{2} x_{8} +2x_{1} x_{7} -16~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +3x_{1} x_{7} -22~\\x_{6} x_{12} +x_{5} x_{11} +2x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +4x_{1} x_{7} -32~\\x_{5} x_{11} +2x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +3x_{1} x_{7} -26~\\x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -20~\\x_{5} x_{11} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -14~\\x_{5} x_{11} +x_{2} x_{8} -8~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 1, 0, 0, 0)
Length of the weight dual to h: 40
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(4V_{7\psi}+6V_{6\psi}+4V_{5\psi}+10V_{4\psi}+16V_{3\psi}+6V_{2\psi}+4V_{\psi}+10V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 7h_{8}+14h_{7}+21h_{6}+28h_{5}+34h_{4}+23h_{3}+17h_{2}+12h_{1}\)
\( e = 3g_{66}+4/17g_{62}+2g_{60}+3/10g_{47}+3/5g_{37}+3/26g_{32}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{12} +x_{4} x_{10} +x_{3} x_{9} +x_{1} x_{7} -12~\\x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -17~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -23~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -34~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +2x_{2} x_{8} +x_{1} x_{7} -28~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{2} x_{8} +x_{1} x_{7} -21~\\x_{5} x_{11} +x_{4} x_{10} +x_{2} x_{8} +x_{1} x_{7} -14~\\x_{5} x_{11} +x_{1} x_{7} -7~\\\end{array}\)


h-characteristic: (0, 2, 0, 0, 0, 0, 0, 0)
Length of the weight dual to h: 32
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 4
Containing regular semisimple subalgebra number 1: D^{1}_4+4A^{1}_1 Containing regular semisimple subalgebra number 2: 4A^{1}_2 Containing regular semisimple subalgebra number 3: A^{1}_3+A^{1}_2+2A^{1}_1 Containing regular semisimple subalgebra number 4: D^{1}_4+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(8V_{6\psi}+20V_{4\psi}+28V_{2\psi}+8V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+12h_{7}+18h_{6}+24h_{5}+30h_{4}+20h_{3}+16h_{2}+10h_{1}\)
\( e = 3511/2739g_{96}+1489/27390g_{92}+1/10g_{61}-2192/5313g_{51}+1/37g_{50}+1/17g_{48}+1/26g_{47}+1972/26565g_{44}+14815/13363g_{26}-503/26726g_{18}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{3} x_{20} -x_{2} x_{19} +x_{1} x_{18} ~\\-x_{10} x_{13} -x_{9} x_{12} +x_{8} x_{11} ~\\x_{9} x_{19} +x_{8} x_{18} +x_{6} x_{16} +x_{4} x_{14} +x_{2} x_{12} +x_{1} x_{11} -10~\\x_{10} x_{20} +x_{9} x_{19} +x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{13} +x_{2} x_{12} +x_{1} x_{11} -16~\\2x_{9} x_{19} +2x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +2x_{2} x_{12} +2x_{1} x_{11} -20~\\x_{10} x_{20} +2x_{9} x_{19} +3x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +2x_{5} x_{15} +2x_{4} x_{14} +x_{3} x_{13} +2x_{2} x_{12} +3x_{1} x_{11} -30~\\x_{10} x_{20} +x_{9} x_{19} +3x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{13} +x_{2} x_{12} +3x_{1} x_{11} -24~\\2x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +x_{3} x_{13} +x_{2} x_{12} +3x_{1} x_{11} -18~\\2x_{8} x_{18} +x_{7} x_{17} +x_{6} x_{16} +x_{5} x_{15} +x_{4} x_{14} +2x_{1} x_{11} -12~\\x_{8} x_{18} +x_{7} x_{17} +x_{4} x_{14} +x_{1} x_{11} -6~\\\end{array}\)


h-characteristic: (0, 0, 0, 1, 0, 0, 0, 0)
Length of the weight dual to h: 30
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: D^{1}_4+3A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_3+A^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(5V_{6\psi}+6V_{5\psi}+10V_{4\psi}+14V_{3\psi}+15V_{2\psi}+10V_{\psi}+6V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+12h_{7}+18h_{6}+24h_{5}+30h_{4}+20h_{3}+15h_{2}+10h_{1}\)
\( e = 1028/775g_{84}+56/775g_{78}+1/17g_{62}+1/26g_{61}-181/372g_{59}+37/372g_{52}+847/750g_{48}+1/10g_{44}-19/750g_{39}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}-x_{3} x_{18} -x_{2} x_{17} +x_{1} x_{16} ~\\-x_{9} x_{12} -x_{8} x_{11} +x_{7} x_{10} ~\\x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{4} x_{13} +x_{2} x_{11} +x_{1} x_{10} -10~\\x_{9} x_{18} +x_{8} x_{17} +x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +x_{1} x_{10} -15~\\x_{9} x_{18} +x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +2x_{4} x_{13} +x_{3} x_{12} +x_{2} x_{11} +2x_{1} x_{10} -20~\\2x_{9} x_{18} +2x_{8} x_{17} +2x_{7} x_{16} +2x_{6} x_{15} +2x_{5} x_{14} +2x_{4} x_{13} +2x_{3} x_{12} +2x_{2} x_{11} +2x_{1} x_{10} -30~\\x_{9} x_{18} +2x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +2x_{5} x_{14} +x_{4} x_{13} +x_{3} x_{12} +2x_{2} x_{11} +2x_{1} x_{10} -24~\\x_{9} x_{18} +x_{8} x_{17} +2x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{3} x_{12} +x_{2} x_{11} +2x_{1} x_{10} -18~\\x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{3} x_{12} +x_{2} x_{11} +2x_{1} x_{10} -12~\\x_{7} x_{16} +x_{6} x_{15} +x_{5} x_{14} +x_{1} x_{10} -6~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 1, 0, 0)
Length of the weight dual to h: 28
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: A^{1}_3+4A^{1}_1 Containing regular semisimple subalgebra number 2: D^{1}_4+2A^{1}_1 Containing regular semisimple subalgebra number 3: A^{1}_3+A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{6\psi}+8V_{5\psi}+8V_{4\psi}+16V_{3\psi}+16V_{2\psi}+8V_{\psi}+11V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+12h_{7}+18h_{6}+23h_{5}+28h_{4}+19h_{3}+14h_{2}+10h_{1}\)
\( e = 3g_{82}+1/10g_{70}+2g_{60}+1/26g_{57}+3/5g_{49}+1/17g_{47}+1/37g_{45}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{1} x_{8} -10~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{2} x_{9} +2x_{1} x_{8} -14~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +2x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -19~\\2x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +3x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +3x_{1} x_{8} -28~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +2x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -23~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +x_{1} x_{8} -18~\\x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -12~\\x_{3} x_{10} +x_{1} x_{8} -6~\\\end{array}\)


h-characteristic: (0, 1, 0, 0, 0, 0, 1, 0)
Length of the weight dual to h: 26
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 3A^{1}_2+A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_3+3A^{1}_1 Containing regular semisimple subalgebra number 3: D^{1}_4+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{6\psi}+6V_{5\psi}+13V_{4\psi}+12V_{3\psi}+16V_{2\psi}+14V_{\psi}+9V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+12h_{7}+17h_{6}+22h_{5}+27h_{4}+18h_{3}+14h_{2}+9h_{1}\)
\( e = 2g_{87}+1/37g_{69}+2/5g_{65}+g_{58}+1/5g_{56}+1/13g_{55}+2/17g_{54}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{6} x_{13} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -9~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -14~\\2x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -18~\\3x_{7} x_{14} +x_{6} x_{13} +2x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} +3x_{1} x_{8} -27~\\2x_{7} x_{14} +x_{6} x_{13} +2x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +x_{2} x_{9} +3x_{1} x_{8} -22~\\x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +x_{2} x_{9} +2x_{1} x_{8} -17~\\x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -12~\\x_{6} x_{13} +x_{4} x_{11} +x_{1} x_{8} -6~\\\end{array}\)


h-characteristic: (0, 0, 1, 0, 0, 0, 0, 1)
Length of the weight dual to h: 24
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+6V_{5\psi}+11V_{4\psi}+16V_{3\psi}+15V_{2\psi}+14V_{\psi}+13V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+11h_{7}+16h_{6}+21h_{5}+26h_{4}+18h_{3}+13h_{2}+9h_{1}\)
\( e = 1/10g_{81}+3g_{79}+2g_{69}+1/17g_{58}+3/5g_{43}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{10} +x_{4} x_{9} +x_{2} x_{7} +x_{1} x_{6} -9~\\x_{5} x_{10} +x_{4} x_{9} +2x_{2} x_{7} +x_{1} x_{6} -13~\\2x_{5} x_{10} +2x_{4} x_{9} +x_{3} x_{8} +2x_{2} x_{7} +x_{1} x_{6} -18~\\2x_{5} x_{10} +3x_{4} x_{9} +x_{3} x_{8} +3x_{2} x_{7} +2x_{1} x_{6} -26~\\x_{5} x_{10} +3x_{4} x_{9} +x_{3} x_{8} +2x_{2} x_{7} +2x_{1} x_{6} -21~\\x_{5} x_{10} +2x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +2x_{1} x_{6} -16~\\x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +2x_{1} x_{6} -11~\\x_{3} x_{8} +x_{1} x_{6} -6~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 0, 2, 0)
Length of the weight dual to h: 24
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 3A^{1}_2 Containing regular semisimple subalgebra number 2: A^{1}_3+2A^{1}_1 Containing regular semisimple subalgebra number 3: D^{1}_4
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{6\psi}+25V_{4\psi}+27V_{2\psi}+28V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+12h_{7}+16h_{6}+20h_{5}+24h_{4}+16h_{3}+12h_{2}+8h_{1}\)
\( e = 2g_{101}+2/5g_{75}+g_{60}+1/5g_{43}+1/13g_{42}+2/17g_{40}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{5} x_{11} +x_{3} x_{9} +2x_{1} x_{7} -8~\\x_{6} x_{12} +2x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -12~\\x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +x_{2} x_{8} +3x_{1} x_{7} -16~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +3x_{3} x_{9} +2x_{2} x_{8} +4x_{1} x_{7} -24~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +2x_{2} x_{8} +3x_{1} x_{7} -20~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -16~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -12~\\x_{6} x_{12} +x_{4} x_{10} +x_{1} x_{7} -6~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 1, 0, 1)
Length of the weight dual to h: 22
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+2V_{5\psi}+15V_{4\psi}+18V_{3\psi}+10V_{2\psi}+14V_{\psi}+24V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+11h_{7}+16h_{6}+20h_{5}+24h_{4}+16h_{3}+12h_{2}+8h_{1}\)
\( e = 3g_{82}+2g_{81}+1/10g_{80}+3/5g_{22}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{8} +x_{2} x_{6} +x_{1} x_{5} -8~\\2x_{4} x_{8} +x_{2} x_{6} +2x_{1} x_{5} -12~\\2x_{4} x_{8} +2x_{2} x_{6} +2x_{1} x_{5} -16~\\3x_{4} x_{8} +3x_{2} x_{6} +3x_{1} x_{5} -24~\\2x_{4} x_{8} +3x_{2} x_{6} +2x_{1} x_{5} -20~\\2x_{4} x_{8} +x_{3} x_{7} +2x_{2} x_{6} +x_{1} x_{5} -16~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -11~\\x_{3} x_{7} +x_{1} x_{5} -6~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 0, 0, 2)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_3
sl(2)-module decomposition of the ambient Lie algebra: \(V_{6\psi}+11V_{4\psi}+32V_{3\psi}+V_{2\psi}+55V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 6h_{8}+10h_{7}+14h_{6}+18h_{5}+22h_{4}+15h_{3}+11h_{2}+8h_{1}\)
\( e = 2g_{97}+3g_{74}+3/5g_{8}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{5} -8~\\2x_{2} x_{5} +x_{1} x_{4} -11~\\3x_{2} x_{5} +x_{1} x_{4} -15~\\4x_{2} x_{5} +2x_{1} x_{4} -22~\\3x_{2} x_{5} +2x_{1} x_{4} -18~\\2x_{2} x_{5} +2x_{1} x_{4} -14~\\x_{2} x_{5} +2x_{1} x_{4} -10~\\x_{3} x_{6} +x_{1} x_{4} -6~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 1, 0, 0, 0)
Length of the weight dual to h: 20
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_2+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(4V_{5\psi}+10V_{4\psi}+16V_{3\psi}+20V_{2\psi}+20V_{\psi}+10V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 5h_{8}+10h_{7}+15h_{6}+20h_{5}+24h_{4}+16h_{3}+12h_{2}+8h_{1}\)
\( e = 2g_{91}+2/5g_{78}+g_{63}+1/26g_{62}+1/17g_{60}+1/5g_{59}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -8~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -12~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -16~\\2x_{6} x_{12} +2x_{5} x_{11} +2x_{4} x_{10} +2x_{3} x_{9} +3x_{2} x_{8} +3x_{1} x_{7} -24~\\2x_{6} x_{12} +2x_{5} x_{11} +2x_{4} x_{10} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -20~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -15~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +2x_{1} x_{7} -10~\\x_{6} x_{12} +x_{3} x_{9} +x_{1} x_{7} -5~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 0, 1, 0)
Length of the weight dual to h: 18
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{5\psi}+10V_{4\psi}+16V_{3\psi}+23V_{2\psi}+18V_{\psi}+17V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 5h_{8}+10h_{7}+14h_{6}+18h_{5}+22h_{4}+15h_{3}+11h_{2}+8h_{1}\)
\( e = 2g_{98}+2/5g_{75}+1/17g_{74}+g_{65}+1/5g_{49}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -8~\\x_{5} x_{10} +2x_{3} x_{8} +x_{2} x_{7} +2x_{1} x_{6} -11~\\x_{5} x_{10} +x_{4} x_{9} +2x_{3} x_{8} +x_{2} x_{7} +3x_{1} x_{6} -15~\\2x_{5} x_{10} +x_{4} x_{9} +3x_{3} x_{8} +2x_{2} x_{7} +4x_{1} x_{6} -22~\\2x_{5} x_{10} +x_{4} x_{9} +2x_{3} x_{8} +2x_{2} x_{7} +3x_{1} x_{6} -18~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +2x_{2} x_{7} +2x_{1} x_{6} -14~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -10~\\x_{5} x_{10} +x_{4} x_{9} +x_{1} x_{6} -5~\\\end{array}\)


h-characteristic: (2, 0, 0, 0, 0, 0, 0, 0)
Length of the weight dual to h: 16
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 3
Containing regular semisimple subalgebra number 1: 8A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_2+4A^{1}_1 Containing regular semisimple subalgebra number 3: 2A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(14V_{4\psi}+50V_{2\psi}+28V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{8}+8h_{7}+12h_{6}+16h_{5}+20h_{4}+14h_{3}+10h_{2}+8h_{1}\)
\( e = g_{112}+1/2g_{96}+1/5g_{77}+1/17g_{64}+1/10g_{55}+1/50g_{53}+1/26g_{52}+1/37g_{51}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -8~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +3x_{1} x_{9} -10~\\x_{8} x_{16} +2x_{7} x_{15} +x_{6} x_{14} +2x_{5} x_{13} +x_{4} x_{12} +2x_{3} x_{11} +2x_{2} x_{10} +3x_{1} x_{9} -14~\\2x_{8} x_{16} +2x_{7} x_{15} +2x_{6} x_{14} +2x_{5} x_{13} +x_{4} x_{12} +3x_{3} x_{11} +3x_{2} x_{10} +5x_{1} x_{9} -20~\\x_{8} x_{16} +x_{7} x_{15} +2x_{6} x_{14} +2x_{5} x_{13} +x_{4} x_{12} +2x_{3} x_{11} +3x_{2} x_{10} +4x_{1} x_{9} -16~\\x_{8} x_{16} +x_{7} x_{15} +x_{6} x_{14} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +3x_{2} x_{10} +3x_{1} x_{9} -12~\\x_{8} x_{16} +x_{5} x_{13} +x_{4} x_{12} +x_{3} x_{11} +2x_{2} x_{10} +2x_{1} x_{9} -8~\\x_{4} x_{12} +x_{3} x_{11} +x_{2} x_{10} +x_{1} x_{9} -4~\\\end{array}\)


h-characteristic: (0, 0, 1, 0, 0, 0, 0, 0)
Length of the weight dual to h: 14
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 7A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_2+3A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(7V_{4\psi}+14V_{3\psi}+28V_{2\psi}+28V_{\psi}+17V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{8}+8h_{7}+12h_{6}+16h_{5}+20h_{4}+14h_{3}+10h_{2}+7h_{1}\)
\( e = g_{106}+1/2g_{91}+1/5g_{83}+1/10g_{72}+1/26g_{71}+1/37g_{70}+1/17g_{69}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{7} x_{14} +x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -7~\\x_{7} x_{14} +x_{6} x_{13} +2x_{5} x_{12} +x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -10~\\2x_{7} x_{14} +2x_{6} x_{13} +2x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -14~\\3x_{7} x_{14} +2x_{6} x_{13} +3x_{5} x_{12} +2x_{4} x_{11} +3x_{3} x_{10} +3x_{2} x_{9} +4x_{1} x_{8} -20~\\2x_{7} x_{14} +2x_{6} x_{13} +2x_{5} x_{12} +2x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} +4x_{1} x_{8} -16~\\x_{7} x_{14} +2x_{6} x_{13} +x_{5} x_{12} +x_{4} x_{11} +2x_{3} x_{10} +2x_{2} x_{9} +3x_{1} x_{8} -12~\\x_{7} x_{14} +x_{6} x_{13} +x_{4} x_{11} +x_{3} x_{10} +2x_{2} x_{9} +2x_{1} x_{8} -8~\\x_{4} x_{11} +x_{3} x_{10} +x_{2} x_{9} +x_{1} x_{8} -4~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 1, 0, 0)
Length of the weight dual to h: 12
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 6A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_2+2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(3V_{4\psi}+16V_{3\psi}+27V_{2\psi}+32V_{\psi}+24V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{8}+8h_{7}+12h_{6}+15h_{5}+18h_{4}+12h_{3}+9h_{2}+6h_{1}\)
\( e = g_{104}+1/2g_{98}+1/17g_{89}+1/5g_{74}+1/10g_{73}+1/26g_{71}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +x_{2} x_{8} +2x_{1} x_{7} -6~\\x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -9~\\2x_{6} x_{12} +2x_{5} x_{11} +x_{4} x_{10} +x_{3} x_{9} +3x_{2} x_{8} +3x_{1} x_{7} -12~\\2x_{6} x_{12} +4x_{5} x_{11} +2x_{4} x_{10} +2x_{3} x_{9} +4x_{2} x_{8} +4x_{1} x_{7} -18~\\2x_{6} x_{12} +3x_{5} x_{11} +2x_{4} x_{10} +2x_{3} x_{9} +3x_{2} x_{8} +3x_{1} x_{7} -15~\\2x_{6} x_{12} +2x_{5} x_{11} +2x_{4} x_{10} +2x_{3} x_{9} +2x_{2} x_{8} +2x_{1} x_{7} -12~\\x_{6} x_{12} +x_{5} x_{11} +x_{4} x_{10} +2x_{3} x_{9} +x_{2} x_{8} +2x_{1} x_{7} -8~\\x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} +x_{1} x_{7} -4~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 0, 0, 1)
Length of the weight dual to h: 10
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 5A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_2+A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{4\psi}+12V_{3\psi}+32V_{2\psi}+32V_{\psi}+35V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{8}+7h_{7}+10h_{6}+13h_{5}+16h_{4}+11h_{3}+8h_{2}+6h_{1}\)
\( e = g_{112}+1/17g_{97}+1/2g_{96}+1/5g_{77}+1/10g_{55}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -6~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +3x_{1} x_{6} -8~\\3x_{5} x_{10} +x_{4} x_{9} +2x_{3} x_{8} +2x_{2} x_{7} +3x_{1} x_{6} -11~\\4x_{5} x_{10} +x_{4} x_{9} +3x_{3} x_{8} +3x_{2} x_{7} +5x_{1} x_{6} -16~\\3x_{5} x_{10} +x_{4} x_{9} +2x_{3} x_{8} +3x_{2} x_{7} +4x_{1} x_{6} -13~\\2x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +3x_{2} x_{7} +3x_{1} x_{6} -10~\\x_{5} x_{10} +x_{4} x_{9} +x_{3} x_{8} +2x_{2} x_{7} +2x_{1} x_{6} -7~\\x_{4} x_{9} +x_{3} x_{8} +x_{2} x_{7} +x_{1} x_{6} -4~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 0, 0, 2)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of containing regular semisimple subalgebras: 2
Containing regular semisimple subalgebra number 1: 4A^{1}_1 Containing regular semisimple subalgebra number 2: A^{1}_2
sl(2)-module decomposition of the ambient Lie algebra: \(V_{4\psi}+55V_{2\psi}+78V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 4h_{8}+6h_{7}+8h_{6}+10h_{5}+12h_{4}+8h_{3}+6h_{2}+4h_{1}\)
\( e = g_{119}+1/2g_{101}+1/5g_{68}+1/10g_{15}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{6} +2x_{1} x_{5} -4~\\x_{3} x_{7} +2x_{2} x_{6} +3x_{1} x_{5} -6~\\x_{3} x_{7} +3x_{2} x_{6} +4x_{1} x_{5} -8~\\2x_{3} x_{7} +4x_{2} x_{6} +6x_{1} x_{5} -12~\\2x_{3} x_{7} +3x_{2} x_{6} +5x_{1} x_{5} -10~\\2x_{3} x_{7} +2x_{2} x_{6} +4x_{1} x_{5} -8~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +3x_{1} x_{5} -6~\\x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -4~\\\end{array}\)


h-characteristic: (0, 1, 0, 0, 0, 0, 0, 0)
Length of the weight dual to h: 8
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 4A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(8V_{3\psi}+28V_{2\psi}+48V_{\psi}+36V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 3h_{8}+6h_{7}+9h_{6}+12h_{5}+15h_{4}+10h_{3}+8h_{2}+5h_{1}\)
\( e = g_{114}+1/2g_{106}+1/5g_{91}+1/10g_{69}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}x_{4} x_{8} +x_{3} x_{7} +x_{2} x_{6} +2x_{1} x_{5} -5~\\2x_{4} x_{8} +2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -8~\\2x_{4} x_{8} +2x_{3} x_{7} +2x_{2} x_{6} +4x_{1} x_{5} -10~\\3x_{4} x_{8} +3x_{3} x_{7} +4x_{2} x_{6} +5x_{1} x_{5} -15~\\2x_{4} x_{8} +2x_{3} x_{7} +4x_{2} x_{6} +4x_{1} x_{5} -12~\\x_{4} x_{8} +2x_{3} x_{7} +3x_{2} x_{6} +3x_{1} x_{5} -9~\\2x_{3} x_{7} +2x_{2} x_{6} +2x_{1} x_{5} -6~\\x_{3} x_{7} +x_{2} x_{6} +x_{1} x_{5} -3~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 0, 1, 0)
Length of the weight dual to h: 6
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 3A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(2V_{3\psi}+27V_{2\psi}+52V_{\psi}+55V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 3h_{8}+6h_{7}+8h_{6}+10h_{5}+12h_{4}+8h_{3}+6h_{2}+4h_{1}\)
\( e = g_{118}+1/2g_{104}+1/5g_{74}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{5} +2x_{1} x_{4} -4~\\x_{3} x_{6} +2x_{2} x_{5} +3x_{1} x_{4} -6~\\x_{3} x_{6} +3x_{2} x_{5} +4x_{1} x_{4} -8~\\2x_{3} x_{6} +4x_{2} x_{5} +6x_{1} x_{4} -12~\\2x_{3} x_{6} +3x_{2} x_{5} +5x_{1} x_{4} -10~\\2x_{3} x_{6} +2x_{2} x_{5} +4x_{1} x_{4} -8~\\2x_{3} x_{6} +2x_{2} x_{5} +2x_{1} x_{4} -6~\\x_{3} x_{6} +x_{2} x_{5} +x_{1} x_{4} -3~\\\end{array}\)


h-characteristic: (1, 0, 0, 0, 0, 0, 0, 0)
Length of the weight dual to h: 4
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: 2A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(14V_{2\psi}+64V_{\psi}+78V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 2h_{8}+4h_{7}+6h_{6}+8h_{5}+10h_{4}+7h_{3}+5h_{2}+4h_{1}\)
\( e = g_{120}+1/2g_{97}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{2} x_{4} +2x_{1} x_{3} -4~\\2x_{2} x_{4} +3x_{1} x_{3} -5~\\3x_{2} x_{4} +4x_{1} x_{3} -7~\\4x_{2} x_{4} +6x_{1} x_{3} -10~\\3x_{2} x_{4} +5x_{1} x_{3} -8~\\2x_{2} x_{4} +4x_{1} x_{3} -6~\\x_{2} x_{4} +3x_{1} x_{3} -4~\\2x_{1} x_{3} -2~\\\end{array}\)


h-characteristic: (0, 0, 0, 0, 0, 0, 0, 1)
Length of the weight dual to h: 2
Simple basis ambient algebra w.r.t defining h: 8 vectors: (1, 0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Containing regular semisimple subalgebra number 1: A^{1}_1
sl(2)-module decomposition of the ambient Lie algebra: \(V_{2\psi}+56V_{\psi}+133V_{0}\)
Below is one possible realization of the sl(2) subalgebra.
\( h = 2h_{8}+3h_{7}+4h_{6}+5h_{5}+6h_{4}+4h_{3}+3h_{2}+2h_{1}\)
\( e = g_{120}
\)
The polynomial system that corresponds to finding the h, e, f triple:
\(\begin{array}{l}2x_{1} x_{2} -2~\\3x_{1} x_{2} -3~\\4x_{1} x_{2} -4~\\6x_{1} x_{2} -6~\\5x_{1} x_{2} -5~\\4x_{1} x_{2} -4~\\3x_{1} x_{2} -3~\\2x_{1} x_{2} -2~\\\end{array}\)